ATOMIC FORCE MICROSCOPY/FLUORESCENCE: Dual approach measures biomolecules with 'unprecedented' accuracy, precision

Sept. 1, 2012
Working to learn how biological cells adhere to each other and to develop new tools to study those cells, Iowa State University researchers have developed a way to make 3D measurements of single biological molecules with "unprecedented accuracy and precision."

Working to learn how biological cells adhere to each other and to develop new tools to study those cells, Iowa State University (Ames, IA) researchers have developed a way to make 3D measurements of single biological molecules with "unprecedented accuracy and precision."1 The new method, called standing wave axial nanometry (SWAN), measures height to within a nanometer without custom optics or special surfaces for the samples.

SWAN involves attaching a commercial atomic force microscope (AFM) to a single-molecule fluorescence microscope: The AFM tip is positioned over a focused laser beam, creating a standing wave pattern. When a molecule treated to emit light is placed within the standing wave, its fluorescence fluctuates in a way that corresponds to the tip's distance from the molecule's surface: That distance can be compared to a marker on the surface and measured.

The researchers, using fluorescent nanospheres and single strands of DNA to test their instrument, reported measurements of a molecule's height accurate to <1 nm, and precision of repeated measurements to 3.7 nm.

In a SWAN setup, the AFM tip is positioned over a focused laser beam, creating a standing wave pattern. The emission of a fluorescent molecule placed within the standing wave indicates the tip's distance from the molecule's surface.

In standing wave axial nanometry (SWAN), positioning an atomic force microscope tip over a focused laser beam excites fluorescence in a particle, whose axial position can be determined with sub-nanometer accuracy and 3.7 nm precision from the phase of the emission intensity.

1. H. Li, C-F Yen, and S. Sivasankar, Nano Lett., 12, 7, 3731–3735 (2012).

Sponsored Recommendations

Achromatic Lenses: High-Quality Custom Optics

March 13, 2025
Ensure clarity and accuracy in your optics systems with Lacroix’s achromatic lenses. Explore how our custom solutions minimize chromatic aberration for perfect results.

Manufacturing Considerations for Tolerancing Aspheres

March 13, 2025
Understand the critical factors in manufacturing aspheres and how Lacroix Optics ensures precise tolerancing in every optical component.

Explore Our Videos: Insights into Precision Optics

March 13, 2025
Get an inside look at Lacroix Optics with our collection of informative videos showcasing our capabilities, innovations, and processes.

Optical Assemblies: Reliable and Precise Solutions

March 13, 2025
Ensure your optical system works seamlessly with Lacroix Optics' custom optical assemblies. Discover the precision and reliability we bring to every project.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!