WGM photonic sensor maps temperature data via drone (with video)

A drone has recorded temperature data using a whispering gallery mode (WGM) Internet of Things (IoT) photonic sensor.

Content Dam Lfw Online Articles 2018 09 Drone Still

A team of researchers at Washington University in St. Louis (St. Louis, MO) has successfully recorded environmental temperature data using a wireless photonic sensor resonator with a whispering-gallery-mode (WGM) architecture. The work is covered in Light: Science & Applications. The photonic sensors recorded data during the spring of 2017 under two scenarios: one was a real-time measurement of air temperature over 12 hours, and the other was an aerial mapping of temperature distribution with a sensor mounted on a drone in a St. Louis city park (see video below).

Both measurements were accompanied by a commercial thermometer with a Bluetooth connection for comparison purposes. The data from the two compared very favorably.

In the grand world of the "Internet of Things" (IoT), there are vast numbers of spatially distributed wireless sensors predominately based on electronics. These devices often are hampered by electromagnetic interference, such as disturbed audio or visual signals caused by a low-flying airplane and a kitchen grinder causing unwanted noise on a radio. But optical sensors are "immune to electromagnetical interference and can provide a significant advantage in harsh environments," said Lan Yang, the Edwin H. & Florence G. Skinner Professor of Electrical & Systems Engineering in the School of Engineering & Applied Science, who led the study from which the findings were published.

In contrast to existing table-sized lab equipment, the mainboard of the WGM sensor is a mere 127 mm x 67 mm and integrates the entire architecture of the sensor system, according to Xiangyi Xu, the paper's first author and a graduate student in Yang's lab.

"The sensor itself is made of glass and is the size of just one human hair; it is connected to the mainboard by a single optical fiber," Xu said. "A laser light is used to probe a WGM sensor. Light coupled out of the sensor is sent to a photodetector with a transmission amplifier. A processor controls peripherals such as the laser current drive, monitoring circuit, thermo-electric cooler and Wi-Fi unit."

In her WGM, light propagates along the circular rim of a structure by constant internal reflection. Inside the circular rim, light rotates one million times. Over that space, light waves detect environmental changes, such as temperature and humidity, for example. The sensor node is monitored by a customized operating systems app that controls the remote system and collects and analyzes sensing signals.

"We developed a smartphone app to control the sensing system over WiFi," Yang said. "By connecting the sensor system to the internet, we can realize real-time remote control of the system." In June 2017, Yang and her group mounted the whole system on the outside wall of a building and accumulated a plot of the frequency shift of the resonance. They compared their data with the commercial thermometer. The researchers also mounted their system on an unmanned drone in May 2017 alongside the commercial thermometer. When the drone flew from one measurement location to others, the resonance frequency of the WGM shifted in response to temperature variations.

"The measurements matched well with results from the commercial thermometer," she said. "The successful demonstrations show the potential applications of our wireless WGM sensor in the IoT. There are numerous promising sensing applications possible with WGM technology, including magnetic, acoustic, environmental and medical sensing."

SOURCE: Washington University in St. Louis; https://source.wustl.edu/2018/09/enabling-internet-of-photonic-things-with-miniature-sensors/

More in Test & Measurement