OA-ICOS spectroscopy measures atmospheric methane

April 4, 2012
Cavity-enhanced laser-based methane analyzers from Los Gatos Research (LGR) have enabled scientists to measure methane-gas venting fluxes in extreme Arctic conditions from a helicopter in real time.

Cavity-enhanced laser-based methane analyzers from Los Gatos Research (LGR; Los Gatos, CA) have enabled scientists to measure methane-gas venting fluxes in extreme Arctic conditions from a helicopter in real time. Scientists from the University of Alaska (Fairbanks, AK), the Russian Academy of Sciences (Vladivostok, Russia), and Stockholm University (Stockholm, Sweden) are publishing a case study on escaping methane plumes from East Siberian Arctic Shelf (ESAS) sea sediments and found that traditional gas chromatography and other laser-based instruments were too expensive, slow, temperature- and pressure-sensitive, and subject to optical misalignment compared to LGR’s patented off-axis integrated cavity output spectroscopy (OA-ICOS) system.

The scientists reported that the fully automated OA-ICOS system was not only compact, self-contained, and maintenance-free, but accurate enough to gather methane mole-fraction data from a flying helicopter at remote sensing distances with much higher dynamic range (part-per-billion to several percent) than other spectroscopy-based technologies. The data obtained from the LGR instruments showed that total annual flux for methane emissions from ESAS (8 teragrams, or 8 Tg) is nearly equivalent to the total estimated emissions from all the world’s oceans. Contact Doug Baer at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Ask the Expert: Building Better Laser Micromachining Systems

Dec. 8, 2023
Dr. Cliff Jolliffe, Head of Strategic Marketing, Industrial Automation, Physik Instrumente (PI), fields questions about integrating controls for different motion systems and lasers...

Video: December 8, 2023 Photonics Hot List

Dec. 8, 2023
In this episode, we cover a microscopy method that hits uncharted cell territory, drone-based imaging for solar farm inspection, soliton microcombs that boost conversion efficiency...

China’s industrial laser market shows steady growth in turbulent times

Dec. 8, 2023
This in-depth market update focuses on trends in laser processing and industrial lasers while touching on what to expect in the ultrafast laser, fiber laser, LiDAR, and handheld...

What does it take to land venture capital for photonics-driven startups?

Dec. 7, 2023
Capital to grow a startup company can come from many sources: contract and non-recurring engineering (NRE) funding, angels and friends, customer upfront payments, and venture ...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!