Miniature integrating-sphere light source easily calibrates microscopes

Nov. 17, 2020
A compact, rugged LED-based light source containing a 4-mm-diameter integrating-sphere is useful for radiometric (intensity) calibration of fluorescence and other microscopes.

Radiometric (intensity) calibration for fluorescence microscopes allows results from two different microscopes to be directly compared if both are properly calibrated (especially important for microscopes “home-built” by the researcher). While fluorescent beads can be used for this purpose, a self-luminous standard radiance source such as an LED makes calibration simpler. Researchers at the National Institute of Metrology (Beijing, China) have developed for this purpose a miniaturized LED-based integrating-sphere light source (LED-ISLS) that includes, in a monolithic structure, an LED, electronics, a battery, and a 4-mm-diameter integrating sphere; the assembly forms a rugged solid polymer module easily mounted and transported.

Experimental devices were constructed containing LEDs with center wavelengths of 468, 519, 595, and 644 nm, respectively, and full widths at half maximum (FWHMs) of 22.9, 26.2, 13.3, and 15.1, respectively. The relative spectral power density distributions of each of the devices was accurately characterized (a requirement for calculation of the spectrally integrated radiance of each LED-ISLS). The temporal stability of each device was characterized at four power levels: 25%, 50%, 75%, and 100% of the maximum level of DC forward current; temporal stability was generally best at the highest power level and fell in the range of about 0.3% to 0.5%. The nonuniformity of radiant exitance at the integrating-sphere exit aperture was also measured and was found to be approximately 0.8%. The radiance of the LED-ISLS devices ranged from 5 W m−2 sr−1 to 69 W m−2 sr−1 and the combined standard uncertainty was 1.3%. The devices allow calibration of the radiance responsivity of fluorescence and other microscopes to within an uncertainty of 2.9% or less. Reference: Y. Fu et al., Opt. Express (2020); https://doi.org/10.1364/oe.403899.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!