Gas sensing to the parts-per-billion level is achieved with a photonic-chip interferometer

Sept. 15, 2020
A silicon nitride-based photonic circuit containing a Mach-Zehnder interferometer functionalized with porous silica is an ultrasensitive gas detector.
2009 Lfw Nb 2 5f57a4a4421c6

Gas sensing is crucial to applications ranging from medical diagnostics (including cancer detection) to pollution monitoring. Photonics can help make gas sensors compact and extremely sensitive, as in a silicon nitride (SiN) waveguide-based sensor designed and tested by researchers at Ghent University (Ghent, Belgium) and TU Wien (Vienna, Austria) that senses acetone, isopropyl alcohol, and ethanol gases down to trace concentrations of 65, 247, and 1.6 parts per billion (ppb), respectively. The researchers chose SiN as a platform because it enables the integration of multiple optical functionalities; in this case, the SiN waveguides were functionalized with a mesoporous silica top-cladding layer.

The SiN waveguide thickness is 300 nm, which works well for light in the 700900 nm spectral range. One interferometric arm of the unbalanced Mach-Zehnder-based design is subjected to the gas under test, which is absorbed by the porous silica top cladding, slightly changing the effective refractive index of the arm through evanescent coupling. The time needed for enough absorption for a measurement is on the order of a few minutes. The light source for the device is a supercontinuum laser; detection is done using a broadband spectral analyzer made by Agilent (Santa Clara, CA). The figure shows response curves to acetone vapors at different concentrations from 130 ppb to 90 ppm. Although the experimental device has no way of distinguishing between different gases, future versions will have more-advanced mesoporous coatings that can selectively adsorb specific gases, and possible multiple interferometers on a single chip to sense different sorts of gases. Reference: G. Antonacci et al., APL Photonics, 5, 081301 (2020); https://doi.org/10.1063/5.0013577     

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!