NCSU silica coating method prevents degradation of quantum dot nanorods

July 20, 2016
Materials research from NCSU describes a technique for applying silica coatings to quantum dot nanorods to prolong life.

Materials research reported in Chemistry of Materials and conducted at North Carolina State University (NCSU; Raleigh, NC) describes a technique for applying precisely controlled silica coatings to quantum dot nanorods in a dayup to 21 times faster than previous methods. In addition to saving time, the advance means the quantum dots are less likely to degrade, preserving their advantageous optical properties.

RELATED ARTICLE: Nanorod arrays enable natural-white LEDs

Quantum dots are nanoscale semiconductor materials whose small size causes them to have electron energy levels that differ from larger-scale versions of the same material. By controlling the size of the quantum dots, researchers can control the relevant energy levelsand those energy levels give quantum dots novel optical properties. These characteristics make quantum dots promising for applications such as optoelectronics and display technologies.

But quantum dots are surrounded by ligands, which are organic molecules that are sensitive to heat. If the ligands are damaged, the optical properties of the quantum dots suffer.

"We wanted to coat the rod-shaped quantum dots with silica to preserve their chemical and optical properties," says Bryan Anderson, a former Ph.D. student at NC State who is lead author of a paper on the work. "However, coating quantum dot nanorods in a precise way poses challenges of its own."

Previous work by other research teams has used water and ammonia in solution to facilitate coating quantum dot nanorods with silica. However, those techniques did not independently control the amounts of water and ammonia used in the process. By independently controlling the amounts of water and ammonia used, the NC State researchers were able to match or exceed the precision of silica coatings achieved by previous methods. In addition, using their approach, the NC State team was able to complete the entire silica-coating process in a single day--rather than up to one to three weeks needed for other processes.

"The process time is important, because the longer the process takes, the more likely it is that the quantum dot nanorods being coated will degrade," says Joe Tracy, an associate professor of materials science and engineering at NC State and senior author on the paper. "The time factor may also be important when we think about scaling this process up for manufacturing processes."

That said, researchers still have a problem: the process of applying the silica coating etches the cadmium sulfide surface of the quantum dot nanorods, which shortens the length of the nanorods by as much as four or five nanometers. That shortening is indicative of etching, which reduces the brightness of the light emitted by the quantum dot nanorods.

"We think ammonia may be the culprit," Tracy says. "We have some ideas that we're pursuing, focused on how to substitute another catalyst for ammonia in order to minimize the etching and better preserve the quantum dot nanorod's optical properties."

SOURCE: NCSU; https://news.ncsu.edu/2016/07/silica-q-dots-2016/

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!