III-V microlaser in silicon photonic circuits can be made with industrial fabrication techniques

Dec. 6, 2016
Whispering-gallery laser cavity is only a couple of microns in diameter.

Because silicon itself does not easily lase, using III-V semiconductor materials that can lase, such as indium gallium arsenide phosphide (InGaAsP) and others, is a time-honored way to add lasers to silicon photonic circuits. This is often done by bonding a prefabricated III-V laser-diode structure to a silicon photonic circuit.

Now, Doris Keh-Ting Ng and colleagues from the A*STAR Data Storage Institute (Singapore) have produced very compact version of these hybrid devices that could lead to micrometer-scale lasers for use in small and rugged barcode scanners, for example.

The team started with a silicon substrate onto which they deposited a thin layer of silicon oxide (SiO2). The 210-nm-thick optically active InGaAsP film was fabricated separately and then bonded on top of the SiO2. The team then etched through some of the material to create cylinders either 2 or 3 μm in diameter. The 3 μm devices emitted laser light with a wavelength of 1519 nm, very close to that used in commercial optical communications systems.

The laser cavity was based on a whispering-gallery geometry; the 2-μm-diameter cavity had a mode volume of only 0.07 Λ3 and a Q (quality) factor of 1.3×104.

Source: http://www.research.a-star.edu.sg/research/7611/mix-and-match-lasers

REFERENCE:

1. Lee, C.-W. et al., Optics Letters 41, 3149–3152 (2016); https://doi.org/10.1364/OL.41.003149.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!