Metamaterial lens has numerical aperture of 0.99

May 1, 2018
A flat metamaterial lens with a thickness of a third of a wavelength and an NA of 0.99 at a 715 nm wavelength has been created.

Optically resolving an object in air to as high a resolution as possible (without resorting to superresolution tricks, of which there are many) using light at a given wavelength means pushing the numerical aperture (NA) of the imaging lens to as close to 1 as possible. With high-NA bulk optics, each incremental boost to NA complicates and enlarges the optical design of the imaging lens. (One way to further boost NA in bulk optics is to use a fluid rather than air as the imaging medium and design the lens accordingly; this approach is used in photolithographic optics to create NAs of 1.3 or slightly higher). Flat metamaterial lenses have the advantage of not getting bulkier as their NA goes up—instead, the metamaterial surface pattern gets more complicated. The highest previously reported NA for a metamaterial lens was <0.9.

Now, researchers at the Data Storage Institute (Agency for Science, Technology and Research, A*STAR) and the Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University (both in Singapore) have created a flat metamaterial lens with a thickness of a third of a wavelength and an NA of 0.99 at a 715 nm wavelength. Such an NA corresponds to a collection angle of 82°. According to the researchers, this collection angle is higher than any previously reported value for flat and bulk optics (in air). Made of silicon nanodisks placed on a fused silica substrate and surrounded by air, and fabricated via standard electron-beam lithographic techniques, the flat lens uses the disks as dielectric nanoantennas with asymmetric scattering patterns to redistribute diffracted energy. The lens focused only about 10% of the incident power, but the researchers believe that the total efficiency could be boosted to about 37% by optimizing the fabrication process.

The researchers used the lens in an experimental setup in which a lone subwavelength scatterer was placed on a prism and excited by the evanescent field from total internal reflection. Showing a filled NA, this experiment more than anything confirmed the lens NA of 0.99 (as the diamond was a true subdiffractive emitter). The lens was also tried out in a confocal configuration that mapped the emission from color centers in a subdiffractive diamond nanocrystal. Reference: R. Paniagua-Domínguez et al., Nano Lett. (2018); doi:10.1021/acs.nanolett.8b00368.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!