A window on a world of applications

Sept. 1, 1997
In the lasers and electro-optics industry many kinds of processes happen inside chambers. Most of them occur at the atomic or molecular level and aren't visible with the naked eye in the traditional sense of "watching through the window."

In the lasers and electro-optics industry many kinds of processes happen inside chambers. Most of them occur at the atomic or molecular level and arent visible with the naked eye in the traditional sense of "watching through the window." Examples of these invisible processes include deposition of optical coatings on different sizes and shapes of substrates and the metal-organic chemical-vapor deposition (MOCVD) growth of optoelectronic devices such as diode lasers, LEDs, and semiconductor detectors.

Optical coatings perform important functions, especially in high-energy laser applications. Ultraviolet-emitting excimer lasers are being increasingly applied in real-world processes. Laser manufacturers demand robust coatings on the numerous optics inside excimer lasers, and vendors have worked hard to meet these specifications. The view in the chamber in the cover photo shows finished excimer laser optics.

Detectors capture the image

Charge-coupled devices (CCDs) are often covered with antireflection coatings before being packaged. These chips are then assembled in cameras for machine-vision uses or in detector housings for instruments. The coatings on them are designed to improve performance or increase robustness. In some imaging applications, CCD cameras are used to monitor processes, but not at the molecular level. Used in conjunction with microscopes, CCD cameras reveal detailed structural information. They can distinguish objects on production lines, capture signals in spectroscopic instrumentation, or monitor activities over an area. Contributing editor Diana Zankowsky explains how to choose between various CCD cameras available in this months Product Focus article (see p. 137).

Once detectors are madeno matter from what materialtheir response must be calibrated for many applications. The steps in this process are important to ensure accuracy (see p. 129). Fiberoptic sensors use light delivered over optical fiber to detect information about displacement, strain, position, and other conditions. These sensors represent another application that is enjoying wider success as the appropriate technology matures. In this months Back to Basics, contributing editor Eric Lerner describes how fiberoptic sensors work and what developers hope to "see" with them (see p. 107). All in all, this issue of Laser Focus World serves as a window for viewing a number of applications of lasers and electro-optics.

About the Author

Heather W. Messenger | Executive Editor

Heather W. Messenger (1955-1998) was Executive Editor for Laser Focus World.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!