Mid-IR QC laser switches with near-IR telecom wavelength

June 4, 2012
Researchers at Northwestern University’s Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL) led by Professor Hooman Mohseni have used a novel gap-loaded nanoantenna that shows resonance at dual wavelengths when integrated onto the facet of a quantum-cascade laser (QCL).

Researchers at Northwestern University’s Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL) led by Professor Hooman Mohseni have used a novel gap-loaded nanoantenna that shows resonance at dual wavelengths when integrated onto the facet of a quantum-cascade laser (QCL). The antenna design shows resonance at the QCL wavelength of 6.1 μm and the switch-beam wavelength of 1.55 μm. Coupled by a nonlinear nanoswitch, the two antennas differ from other gap-loaded nanoantennas in that the cross-polarized switch beam antenna allows for enhanced absorption in the gap-loaded germanium region, which increases the switching efficiency. With switching power on the order of picojoules, the dual-wavelength operation of the device suggests applications in telecommunications, free-space optical communications, and laser rangefinding.

The optical nanocircuit is extremely small (less than half a cubic micron) and integrated directly at the laser facet. When light at 1550 nm is coupled to the antenna, its intensity is enhanced by the smaller bowtie. This changes the refractive index of the germanium, and therefore modulates the larger antenna and thus the overall QCL power. Experimental data for the device shows excellent agreement with simulation data. The device shows a modulation depth of approximately 15% at the switch-beam power of 70 μW, resulting in a switching energy of 8.4 pJ—comparable to other all-optical switch designs, but with a much smaller device size. Contact John Kohoutek at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!