Putting bowtie nanoantennas in arrays helps them concentrate light a thousandfold higher

Urbana-Champaign, IL--Resonantly optically excited periodic bow-tie nanoantenna (BNA) arrays can concentrate light a thousandfold more than can individual nanoantenna bow-ties. The increased UV-visible optical response could lead to highly efficient solar cells, as well as higher-resolution optical imaging of nano-sized objects such as proteins and DNA molecules.

A group from from the University of Illinois led by Nicholas Fang and Kimani Toussaint has demonstrated the thousandfold increase in response. Each BNA consists of two triangular pieces of gold with their tips facing each other in a bow-tie shape. They take energy from an illuminating laser beam and compress it into the nanometer gap separating the two triangles. The result is a concentrated spot of light that is many times more intense than the incoming beam.

The group fabricated 50-nm-thick gold BNAs composed of two equilateral triangles with 140 nm sides separated by a 20 nm gap and acquired the emission spectra when illuminated with 780 nm laser light using a camera made by Andor (Belfast, Ireland). When individual antennas were gathered into arrays with 500 nm center-to-center spacing, they found that the large local intensity enhancement of the single BNA was boosted by a factor of 1,000. In addition, the resonantly excited arrays exhibited uniform emission over a spectral region of more than 250 nm.

Studies have suggested that nanoantenna-based solar-energy-collection devices could have a conversion efficiency up to 80%.

Antoine Varagnat, a product specialist at Andor, noted that Andor’s "iDus" CCD platform, used in the research, is well-suited to the study of the key mechanisms at the origin of nanoantennas unique properties, namely nonlinear second-harmonic generation (SHG) and complex photoluminescence. The camera's high UV to near-IR response, low noise, and high dynamic range allow the analysis of a wide range of intensities of these broadband phenomena, providing the accurate information essential to the fine-tuning and optimization of the amplification properties of these nanoantennas. The UV-enhanced back-illuminated CCD was a good fit for the team’s 350 to 660 nm detection requirement, adds Varagnat.

Source:  Andor


Kaspar D. Ko et al., Nano Letters 11, p. 61 (2011).


Posted by John Wallace

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

Follow OptoIQ on your iPhone. Download the free App here 


Most Popular Articles


Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...

Solutions in Search of Problems: What Spectroscopy Can Do for You

Spectroscopy is so pervasive that most of us take it for granted. We use it for routine laboratory and test measurements without appreciating how those same ...

Technical Digests

HIGH-ENERGY LASER COATINGS: Eliminating laser damage proactively

High-power and high-energy thin-film antireflection coatings for laser optics require careful des...
Sponsored by

LIBS -- spectroscopy for remote identification of materials

Laser-induced-breakdown spectroscopy (LIBS) uses a pulsed laser to vaporize a small sample of a s...
Sponsored by

Laser Tools for Materials Processing

Laser materials processing requires not only the appropriate industrial laser system, but also a ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.


Phantom v1610

Phantom v1610 high-speed digital camera can shoot 1 million FPS.

Phantom v711

Phantom v711 high-speed digital camera

Evolve 128 EMCCD Camera

Quantitative high performance with extreme sensitivity for low-light applications.


Surface Optics Corp

Designs and manufactures hyperspectral and multispectral imagers operating from the ult...

Optics Balzers AG

Possesses comprehensive know-how in optical thin-film coatings and components, glass pr...

Cremat Inc

Manufactures and supplies charge-sensitive preamplifiers for use in nuclear and x-ray d...

Social Activity

Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS