Putting bowtie nanoantennas in arrays helps them concentrate light a thousandfold higher

Urbana-Champaign, IL--Resonantly optically excited periodic bow-tie nanoantenna (BNA) arrays can concentrate light a thousandfold more than can individual nanoantenna bow-ties. The increased UV-visible optical response could lead to highly efficient solar cells, as well as higher-resolution optical imaging of nano-sized objects such as proteins and DNA molecules.

A group from from the University of Illinois led by Nicholas Fang and Kimani Toussaint has demonstrated the thousandfold increase in response. Each BNA consists of two triangular pieces of gold with their tips facing each other in a bow-tie shape. They take energy from an illuminating laser beam and compress it into the nanometer gap separating the two triangles. The result is a concentrated spot of light that is many times more intense than the incoming beam.

The group fabricated 50-nm-thick gold BNAs composed of two equilateral triangles with 140 nm sides separated by a 20 nm gap and acquired the emission spectra when illuminated with 780 nm laser light using a camera made by Andor (Belfast, Ireland). When individual antennas were gathered into arrays with 500 nm center-to-center spacing, they found that the large local intensity enhancement of the single BNA was boosted by a factor of 1,000. In addition, the resonantly excited arrays exhibited uniform emission over a spectral region of more than 250 nm.

Studies have suggested that nanoantenna-based solar-energy-collection devices could have a conversion efficiency up to 80%.

Antoine Varagnat, a product specialist at Andor, noted that Andor’s "iDus" CCD platform, used in the research, is well-suited to the study of the key mechanisms at the origin of nanoantennas unique properties, namely nonlinear second-harmonic generation (SHG) and complex photoluminescence. The camera's high UV to near-IR response, low noise, and high dynamic range allow the analysis of a wide range of intensities of these broadband phenomena, providing the accurate information essential to the fine-tuning and optimization of the amplification properties of these nanoantennas. The UV-enhanced back-illuminated CCD was a good fit for the team’s 350 to 660 nm detection requirement, adds Varagnat.

Source:  Andor


Kaspar D. Ko et al., Nano Letters 11, p. 61 (2011).


Posted by John Wallace

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

Follow OptoIQ on your iPhone. Download the free App here 


Most Popular Articles


Durable survivors evolve new forms


Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS