High-color-purity UV OLED has asymmetric microcavity design

April 14, 2020
An asymmetric structural design with a tailored distributed Bragg reflector (DBR) structure gives a UV OLED a narrow bandwidth of 9.95 to 15.2 nm.

Ultraviolet organic light-emitting devices (UV OLEDs) are expected to develop into mass-producible, large-sized UV light sources for industry and the medical arena. However, most UV-emitting organic materials have broad emission spectra, and thus the electroluminescence (EL) of the most common UV OLEDs have significant visible light components that can limit the uses of these sources. The development of a narrowband pure UV emission OLED with considerable irradiance and satisfactory durability in practical applications is still a challenge, but a research group led by Liu Xingyuan from the Chinese Academy of Sciences (Beijing, China) has developed a high-color-purity OLED by introducing simple optical structures into the device.

The microcavity (μC) UV OLEDs were constructed using an asymmetric structural design with a specific distributed Bragg reflector (DBR) structure. The researchers found that the asymmetric microcavity could effectively suppress the visible light component, leading to narrowband pure UV emission with tunable wavelength from 366 nm to 400 nm, a full width at half maximum (FWHM) bandwidth from 9.95 to 15.2 nm, and a maximum irradiance of 2.79 to 5.63 mW/cm2. The μC UV OLEDs showed improvement over other devices both in irradiance and lifetime, owing to the enhanced carrier injection and precise regulation of the exciton recombination region in the ultrathin microcavity. Reference: J. Lin et al., ACS Appl. Mater. Interfaces (2020); https://doi.org/10.1021/acsami.9b20212.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!