400 fJ/bit silicon ‘transmitter’ uses all CMOS processes

Dec. 1, 2009
Researchers at Sun Microsystems Physical Sciences Center (San Diego, CA), Sun Laboratories (Menlo, Park, CA), and Luxtera (Carlsbad, CA) have built the lowest-energy-per-bit silicon (Si) communications transmitter (modulator plus driver circuits) to date using all complementary metal-oxide semiconductor (CMOS) processes.

Researchers at Sun Microsystems Physical Sciences Center (San Diego, CA), Sun Laboratories (Menlo, Park, CA), and Luxtera (Carlsbad, CA) have built the lowest-energy-per-bit silicon (Si) communications transmitter (modulator plus driver circuits) to date using all complementary metal-oxide semiconductor (CMOS) processes.

Click here to enlarge image

The key elements of an energy-efficient Si-based interconnect for inter- and intra-chip optical communications are a low-power modulator, a low-power driver circuit, and efficient integration of these two components. For the modulator, the researchers fabricated a ring resonator (15 µm in radius) using the Luxtera-Freescale 130 nm silicon-on-insulator (SOI) CMOS process, with grating couplers used for the optical input and output ports with surface-normal coupling. The modulator was then integrated with a separate driver circuit fabricated in its own CMOS process using flip-chip integration. The hybrid assembly was die-attached and wire-bonded to a printed circuit board and placed on a heat sink for thermal stability. Using an off-chip laser source, stable error-free transmission with a bit-error rate lower than 10-15 at a data rate of 5 Gbit/s was achieved with a power consumption of 1.95 mW, representing a record-low energy consumption of less than 400 fJ/bit. Contact Ashok Krishnamoorthy at [email protected].

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!