Connected to an electrical readout, a multimaterial fiber becomes a photodetector

Nov. 18, 2016
"Selective break-up" fabrication creates discrete semiconductor domains between continuous conductors.

Multimaterial optical fibers can combine electronic and photonic functions ine one fiber. A variation on this approach taken by scientists at the Massachusetts Institute of Technology (MIT; Cambridge, MA), the University of Central Florida College of Optics and Photonics (CREOL; Orlando, FL), and Indiana University Bloomington uses a polymer fiber as substrate for a semiconducting glass wire and two conducting wire electrodes; in the fiber-drawing process, the semiconducting wire breaks up into about 104 discrete microspheres (with diameters of on the order of 10 μm) per fiber, while the each conductors remain in one piece.

The chalcogenide semiconductor was amorphous arsenic pentaselenide (As2Se5) and the two electrodes were a carbon-black-filled polyethylene matrix; the fiber substrate was polycarbonate polymer. The fiber was drawn twice to reach the final configuration.

A photoresistive response to light from a Ti:sapphire laser with a wavelength of 760 nm and a power of 55 mW. In addition, optical resonances due to the linear array of microspheres were seen.

A photodetector with a slender fiber geometry, so unlike most photodetector shapes, could find use in novel applications.

REFERENCE:

1. Michael Rien et al., Nature Communications (2016); doi: 10.1038/ncomms12807

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!