Solar cells to benefit from improved indium oxide deposition quality

May 5, 2015
Researchers have developed a novel approach to prepare transparent conductive oxides that will improve solar cells.

IMAGE: Research on improved indium oxide deposition is highlighted on the cover of Rapid Research Letters. Reference: Macco et al., Phys. Status Solidi RRL 8, 12, 987–990 (2014). (Image credit: Oxford Instruments)

Eindhoven University of Technology (TU/e) researchers have developed a novel approach to prepare transparent conductive oxides (TCOs) consisting of hydrogen-doped indium oxide (In2O3:H) that are both highly conductive and highly transparent. Using an Oxford Instruments Atomic Layer Deposition (ALD) system, the team was able to prepare amorphous In2O3:H at 100 °C by ALD, followed by a brief solid phase crystallization step at 200 °C. In comparison to conventional sputtered tin-doped indium tin oxide (ITO), the salient feature of the ALD In2O3:H process is the superior electron mobility that simultaneously enables a lower resistivity (0.26 mΩ cm) and a negligible free carrier absorption in the infrared.

RELATED ARTICLE: Transparent conductive films for photonics proliferate

Oxford Instruments says its FlexAL and OpAL tools allow both the deposition of the amorphous indium oxide as well as the subsequent crystallization at modest temperatures of 150 to 200 °C. The high conductivity and high transparency, in conjunction with the low-temperature, soft processing, makes the method especially promising for the application of the TCO in silicon heterojunction solar cells.

"Prof. Kessels and the Plasma and Materials Processing (PMP) group at TU/e continue to conduct exciting research using our ALD systems within new application areas," said Oxford Instruments Plasma Technology's ALD product manager, Chris Hodson. "This key technology advance is of real interest to the solar cell research community, and I’m certain our continuing collaboration with TU/e will bring additional advances in this and other technology areas."

Kessels says, "There is still a lot of potential for improving solar cells by thin films prepared by ALD, it is a very versatile technique yielding the highest quality films at low temperatures, without inducing damage, and with an unparalleled level of growth control. These are merits yielding opportunities for virtually all types of solar cells."

SOURCE: Oxford Instruments;

Sponsored Recommendations

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Fluorescence Microscopy Part 1: Illuminating Samples for High-Resolution Imaging

Dec. 1, 2023
Illuminating Samples Fluorescence microscopy is a powerful imaging technique widely used in various fields, especially in biomedical research, to visualize and study fluorescently...

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!