Laser-based x-ray images bone sample in 3D, within minutes

April 24, 2018
The laser-based x-ray source enables tomographic reconstruction of the bone sample within a few minutes rather than several hours.

Researchers from Ludwig-Maximilians University (LMU), the Max Planck Institute of Quantum Optics (MPQ), and the Technical University of Munich (TUM; all in Munich, Germany) have demonstrated that a laser-based x-ray source enables tomographic reconstruction of the three-dimensional (3D) fine structure of a bone sample within a few minutes rather than several hours. The breakthrough was made possible by the further development of ATLAS, the high-performance laser in LMU's Laboratory for Extreme Photonics (LEX Photonics) at LMU on the Research Campus in Garching, Germany. Reconstruction of the sample from the imaging data was also facilitated using specially designed computer programs.

Related: A new era of bioimaging with x-rays

To harness the advantages of synchrotron radiation for general use in medicine, the research team has been exploring the application of high-performance lasers to the production of x-rays. In their setup, hydrogen atoms are irradiated with extremely intense pulses of laser light. The highly energetic optical fields strip the electrons from the atoms and part of the ionized plasma electrons are accelerated. Simultaneously, these electrons oscillate in the plasma fields, which causes them to emit the desired synchrotron radiation—that is, high-intensity x-rays. Moreover, this whole process takes place over a path-length of <15 mm. So, laser-based x-ray sources have a far smaller footprint, and are much less expensive to build, than conventional synchrotrons, but produce x-radiation of comparable quality.

In early trials carried out at the Max Planck Institute in 2015, the research team was able to derive the 3D structure of an insect from 2D projection images taken from different angles. For the latest experiments, performed at LEX Photonics, Stefan Karsch and his colleagues have boosted the pulse rate, photon yield, and photon energies, and this time they chose to image a sample of human bone. Thanks to an improved processing algorithm developed by Franz Pfeiffer and his group at TUM, the team needed to collect significantly less data than before. Accordingly, the complete tomogram could be obtained within less than three minutes.

The project was conceived and initiated in the Munich-Centre for Advanced Photonics (a Cluster of Excellence), and is undergoing further development at the Center for Advanced Laser Applications (CALA; also in Garching). The laser systems available at CALA are expected to significantly enhance the efficiency of the source and the quality of the radiation generated, thus making this new form of tomography available for clinical applications.

Details of the team's work appear in the journals Optica and Nuclear Instruments and Methods A.

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!