Prototype portable neuroimaging system to study stroke recovery, epilepsy

April 13, 2012
Researchers at the University of Toronto in Canada have developed a portable neuroimaging prototype for studying the effects of stroke recovery and epilepsy.

Researchers at the University of Toronto in Canada have developed a portable neuroimaging prototype for studying the effects of stroke recovery and epilepsy. Equipped with an electron-multiplying charge-coupled device (EMCCD) camera, the system continuously monitors blood flow to the brain in non-anesthetized animals.

University of Toronto Assistant Professor Ofer Levi and colleagues demonstrated how they were able to simultaneously measure two modalitiesblood oxygenation and flow speedsin one system. The system also allowed them to statistically distinguish between veins and arteries, something never before accomplished. Other scaled-down imaging solutions are limited to tracking a single modality or require the use of multiple complex systems.

The team plans to create a smaller, portable version of the system that will allow them to image fully conscious, active animals participating in normal behaviors, says Levi. Doing so will enable long-term chronic monitoring of epilepsy dynamics and recovery from stroke in preclinical animal studieswhich could lead to an instrument that can be used for clinical use in patients, he says.

Levi simultaneously quantified flow changes in blood vessels and measured dynamics in oxygenation to track neural activity in real time using an EMCCD camera (QImaging's Rolera EM-C2). The camera's low read noise allowed him to rapidly detect low-light signals with high sensitivity. So, he and his team were able to show dynamics of flow and oxygenation changes in response to induced ischemia in a wide field of view with speeds that at times exceeded 100 fps, making it possible to calibrate the entire brain flow map, he says.

For more information on the team's work, which has been published in Biomedical Optics Express, please visit

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!