Quantum dots increase uptake of cancer drug

Jan. 1, 2011
Researchers at the University at Buffalo (UB) have developed a technology using quantum dots that promises major implications for research and treatment of tuberculosis and other inflammatory lung diseases.

Researchers at the University at Buffalo (UB) have developed a technology using quantum dots that promises major implications for research and treatment of tuberculosis and other inflammatory lung diseases. They linked quantum dots with doxorubicin, an anti-cancer chemotherapy drug, to target lung cells known as alveolar macrophages (aMOs), which play a critical role in the pathogenesis of various inflammatory lung injuries.

A paper in Nanomedicine: Nanotechnology, Biology and Medicine describes the study, which tested the ability of linked quantum dot-doxorubicin (QD-DOX) to decrease lung inflammation by delivering QD-DOX or doxorubicin alone to rats and mice (and then assessing damage to the lung). Doxorubicin, a frequently used cancer drug, is known to cause a variety of damaging immune responses in cancer patients. Results showed that QD-DOX increased uptake of the drug compared with doxorubicin alone. The researchers also demonstrated that the drug is released from the QD-DOX formulation once it is delivered into the targeted cell and still retains its bioactivity.

Compared with the image of lung tissue injected with doxorubicin alone (left), an image of lung tissue injected with linked quantum dot-doxorubicin (QD-DOX) (right) indicates indicates an increased uptake of the drug, as shown by the yellow dots. (Image courtesy University at Buffalo)

"Based on these results, we believe that linking quantum dots with therapeutic drugs may have tremendous potential...compared to other nanoparticle formulations, and should be further developed for lung pharmacotherapy applications," says Krishnan V. Chakravarthy, lead author on the paper.

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!