Technique can control gold nanorods' optical properties, enabling biomedical utilities

Nov. 21, 2013
North Carolina State University researchers have a developed a technique for efficiently producing gold nanorods in large quantities while simultaneously controlling their dimensions and optical properties. The work could find utilities in biomedical imaging and cancer treatment, among others.

North Carolina State University (Raleigh, NC) researchers have a developed a technique for efficiently producing gold nanorods in large quantities while simultaneously controlling their dimensions and optical properties. The work could find utilities in biomedical imaging and cancer treatment, among others.

Related: Nanorods detect DNA traces with higher sensitivity

The research teamled by Dr. Joseph Tracy, an associate professor of materials science and engineering at NC Statestarted with an existing technique in which gold nanorods are formed by mixing two chemical solutions together. However, that technique only converts 30 percent of the gold into nanorodsthe rest remains dissolved in solution.

To convert the remaining 70 percent of the gold into nanorods, the researchers added a continuous stream of ascorbic acid (known as vitamin C) to the solution, while constantly stirring the mixture. The ascorbic acid essentially pulls the gold out of the solution and deposits it on the existing nanorods.

But the researchers also found that the slower they added the ascorbic acid, the stubbier the nanorods became. This is important because the optical properties of gold nanorods depend on their aspect ratio (relative height and width). For example, long, thin gold nanorods absorb light at wavelengths greater than 800 nm (near-infrared), while shorter, wider gold nanorods absorb light at wavelengths below 700 nm (red or dark red).

"The ability to fine-tune these optical properties will likely be useful for the development of new biomedical applications," Tracy says.

Full details of the work appear online in the journal Chemistry of Materials; for more information, please visit http://pubs.acs.org/doi/abs/10.1021/cm402277y.

-----


Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn


Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!