Laser bioimaging technique defines pituitary tumors with extreme precision

July 29, 2015
A laser bioimaging technique could help surgeons more precisely define the locations of pituitary tumors in near-real time.

Researchers at Brigham and Women’s Hospital (BWH; Boston, MA) used a laser bioimaging technique that could help surgeons more precisely define the locations of pituitary tumors in near-real time.

The work involved a visualization technique called matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) that can analyze specific hormones, including growth hormone and prolactin, in tissue. In a study, the researchers found that it is possible to use MALDI MSI to determine the composition of such hormones in a pituitary sample in less than 30 minutes. This could give surgeons critical information to help distinguish tumor from normal gland.

The vast majority of pituitary tumors are noncancerous, but can cause headaches and profound fatigue, and can also disrupt hormone function. Currently, surgeons rely on radiologic images and magnetic resonance imaging (MRI) to gather information about the size and shape of the tumor, but the resolution of such imaging technologies is limited, and additional surgeries to remove more of the tumor may be needed if a patient’s symptoms persist.

To test the MALDI MSI technique, the research team analyzed hormone levels in 45 pituitary tumors and six normal pituitary gland samples, finding a distinct protein signature unique to the normal or tumor sample.

Mass spectrometry, a technique for measuring chemicals present in a sample, is currently used in the operating room to help inform clinical decisions, but up until now, the focus has been on small molecules (metabolites, fatty acids, and lipids) using a different type of approach. By analyzing proteins, MALDI MSI offers a way to visualize hormone levels.

Current methods used to detect hormone levels take too long to fit the time constraints of surgical intervention. Surgeons must either remove a larger amount of potentially healthy pituitary gland or perform follow up surgery if the tumor has not been fully removed.

“We’re hoping that techniques like this one will help move the field toward more precise surgery: surgery that not only removes all of the tumor, but also preserves the healthy tissue as much as possible,” says corresponding author Nathalie Agar, Ph.D., director of the Surgical Molecular Imaging Laboratory in the Department of Neurosurgery at BWH.

In the next phase of their work, Agar and her colleagues plan to test out the technique in BWH’s Advanced Multimodality Image Guided Operating Suite (AMIGO) and analyze the impact of the technique on clinical decision-making.

Full details of the work appear in the Proceedings of the National Academy of Sciences; for more information, please visit http://dx.doi.org/10.1073/pnas.1423101112.

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!