BIOMEDICAL IMAGING: Optical absorption's suppression of interference promising for biomedical imaging

Sept. 16, 2014
A new discovery could improve medical imaging within biological tissue: Physicists from the University of Twente and Yale University found that light traveling through a diffusing material follows a straighter path if the material partially absorbs the light.

A new discovery could improve medical imaging within biological tissue: Physicists from the University of Twente (Enschede, The Netherlands) and Yale University (New Haven, CT) found that light traveling through a diffusing material follows a straighter path if the material partially absorbs the light.1

Numerical calculations reveal the distribution of light intensity inside an opaque diffusing medium. Light enters the material from the left. The top image demonstrates multiple scattering, which causes the light paths to become random walks (blue arrows). The light exits in random directions, which precludes imaging. The bottom image illustrates an absorbing opaque medium. The transport of light occurs via straighter paths, which results in a coherent image on the right-hand side. (Image courtesy of the Dutch Foundation for Fundamental Research on Matter)

Photons traveling through a scattering medium perform a random walk, which resembles an uncoordinated stagger. The researchers found that in opaque media such as biological tissue, light absorption actually straightens this path, leading to less diffraction by scattering and thus improved imaging through the material.

This seems counterintuitive: Light absorption is usually detrimental for imaging, as it reduces the intensity of the visible image. But the researchers discovered that if enough light is absorbed, interference is suppressed; numerical calculations showed that long, meandering light paths are suppressed far more than short, straight paths. With increasing absorption, straight ("ballistic") light paths persist while the number of scattered paths is considerably reduced.

1. S. F. Liew et al., Phys. Rev. B, 89, 25 (2014); doi:10.1103/PhysRevB.89.224202.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!