Optogenetics expert Deisseroth to win 2018 Kyoto Prize

June 19, 2018
Deisseroth will be honored for pioneering optogenetics and the optogenetics-enabled "development of causal systems neuroscience."

Karl Deisseroth, MD, PhD, a Stanford University professor of bioengineering and of psychiatry and behavioral sciences and a Howard Hughes Medical Institute (HHMI) investigator, will receive the 2018 Kyoto Prize for advanced technology. Deisseroth will be honored for pioneering optogenetics and the optogenetics-enabled "development of causal systems neuroscience," the award citation notes, referring to the science of establishing causal relationships between nerve-circuit activity and behavior, rather than merely observing correlations between them.

Related: Optogenetics pioneer Karl Deisseroth to win prestigious FNIH award

Optogenetics allows scientists to manipulate the activity of nerve cells in an animal's brain. Genes encoding light-sensitive proteins (opsins) are inserted into specific nerve cells. Then, a pulse of laser light, delivered through an optical fiber implanted in the brain, can turn these cells' signaling activity on or off. By observing how the animal behaves when the signaling is either active or inactive, scientists can deduce the cells' function. The tool has enabled researchers to better understand brain disorders such as schizophrenia, depression, and Parkinson's disease.

Deisseroth's lab developed the basic components of optogenetics between 2004 and 2009. Between 2008 and 2018, his lab elucidated the inner workings of opsins, allowing them to develop variations of these molecules and enabling more richly detailed, precise, and versatile exploration of neural circuits. Thousands of laboratories around the world routinely employ Deisseroth's methodology and opsins to identify the brain circuitry responsible for specific behaviors, both healthy and maladaptive. Their findings have given rise to thousands of publications in peer-reviewed journals.

The Kyoto Prize has been awarded annually since 1985 by the Inamori Foundation, a Japanese charitable organization, in three separate categories: advanced technology, basic sciences, and arts and philosophy. The prizes, which consist of a diploma, a 20-karat gold medal, and a gift of 100 million yen (about $913,000), will be awarded at a ceremony in Kyoto, Japan, on November 10, 2018.

For more information on Deisseroth's work, please visit web.stanford.edu/group/dlab.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!