Highly sensitive optical sensor detects magnetic fields from the brain, heart

Sept. 24, 2018
The optical sensor could help scientists better understand the activity of the brain and diseases of the brain.

Researchers at the University of Arizona (Tucson, AZ) have developed an optical sensor for measuring very weak magnetic fields, such as those produced when neurons fire in the brain. The inexpensive and compact sensors could offer an alternative to the magnetic resonance imaging (MRI) systems currently used to map brain activity without the expensive cooling or electromagnetic shielding required by MRI machines. They could help scientists better understand the activity of the brain and diseases of the brain, such as dementia and Alzheimer's.

"A portable, low-cost brain imaging system that can operate at room temperature in unshielded environments would allow real-time brain activity mapping after potential concussions on the sports field and in conflict zones where the effect of explosives on the brain can be catastrophic," explains research team member Babak Amirsolaimani.

The researchers fabricated the magnetic sensors using optical fibers and a newly developed polymer-nanoparticle composite that is sensitive to magnetic fields. The sensors can detect the brain's magnetic field, which is 100 million times weaker than the magnetic field of earth. The researchers also showed that the new sensor can detect the weak magnetic pattern of a human heartbeat and has the capability to detect magnetic fluctuations that change every microsecond from an area as small as 100 µm2.

"The all-optical design of the sensor means it could be fabricated inexpensively on a silicon photonics chip, making it possible to produce a system that is almost as small as the sensor's 10-µm-diameter optical fiber," Amirsolaimani says. "Multiple sensors could then be used together to provide high-spatial-resolution brain mapping."

The optical method for detecting weak magnetic fields takes advantage of the fact that a magnetic field causes the polarization of light to rotate, with the degree of rotation dependent on the material through which the light passes. The researchers developed a new composite material made of nanoparticles dispersed in a polymer that imparts a detectible polarization rotation in light when very weak magnetic fields are present. They selected nanoparticles based on magnetite and cobalt because these materials exhibit very high magnetic sensitivity. They then optimized the size, spacing, and coating of the nanoparticles to create a composite material that is extremely sensitive to magnetic fields.

The researchers detected the polarization rotation using an optical interferometer. This works by splitting laser light into two paths, one of which passes through the highly sensitive material while the other does not. The polarization of each light path is detected and compared to measure fluctuations in very small magnetic fields. When detecting weak magnetic fields, noise can easily cover up the signal being detected. For this reason, the researchers used an interferometer setup that eliminates ambient environmental effects such as vibration and temperature fluctuations. This setup kept noise levels very close to the theoretical limit of the optical design, which was key for detecting very weak magnetic fields.

The researchers used the sensors to measure the magnetic field created by electrical impulses produced during the human heartbeat. They were able to detect a clear magnetic signal exhibiting high contrast, demonstrating the technology's potential as a simple replacement for electrocardiography (ECG) tests commonly performed to detect heart problems.

Next, the researchers plan to study the long-term stability of the sensors and how well they withstand environmental changes. They also want to fabricate several hundred sensors to make a system for evaluating and imaging the entire magnetic field of a human brain.

Full details of the work appear in the journal Optics Letters.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!