Laser heating of biological microstructures shows potential for neuroscience applications

July 31, 2014
Physicists from Radboud University investigated tubular biological microstructures that showed unexpected luminescence after heating—optical properties that could have utility in applications involving optical fibers and biomedical lasers, such as in neuroscience.

Physicists from Radboud University (Nijmegen, The Netherlands) investigated tubular biological microstructures that showed unexpected luminescence after heating—optical properties that could have utility in applications involving optical fibers and biomedical lasers, such as in neuroscience.

Related: Luminescent nanoparticle efficient and effective for PDT, cell imaging

Luminous peptide microstructures self-assemble in a water environment. After heating them with a laser, they showed luminescence in the green range of the optical spectrum.

After heating the tubular microstructures (a and c) with a laser at the location of the red circle, energy propagates in the direction of the arrow. Post-heating luminescence occurs (b and d) at both ends of the microstructure (circled red and blue). In (b), the blue rectangle zooms in on the right hand end of the microstructure. (Photo courtesy of Sergey Semin)

"The optical activity in the green range was a surprise for us," says physicist Sergey Semin of Radboud University, who led the work. "According to our theories, the molecular structure of our molecules forbids them to be luminescent in that spectral range. We expect that interactions between the peptide and the water molecules might be the cause for our unexpected finding. They form a kind of 'super cell' together, which we hypothesize emits light after heating."

Semin explains that understanding the underlying mechanisms of these microstructures can give new insight in the optical properties of peptides and short organic molecules. Since the microstructures are the core recognition motif of β-amyloid fibrils that form plaques in the human brain, the team's work could have implications in studies of Alzheimer's and other brain diseases.

The recognition structures can be excited and made visible by heating them, but clinical applications are still far away, Semin says.

The research team's findings were published in the journal Small; for more information, please visit http://dx.doi.org/10.1002/smll.201401602.

-----

Don't miss Strategies in Biophotonics, a conference and exhibition dedicated to development and commercialization of bio-optics and biophotonics technologies!

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!