UV light exposure method helps demonstrate how breast cancer develops

Feb. 13, 2019
The work could inspire new approaches to treating patients and inhibiting tumor growth.

Using UV light to examine how mammary cells respond in a stiffness-changing hydrogel, a team of bioengineers at the University of California San Diego's Jacobs School of Engineering discovered that several pathways work together to promote the transformation of breast cells into cancer cells. The work could inspire new approaches to treating patients and inhibiting tumor growth.

"By dynamically modulating the stiffness of the microenvironment, we can better mimic what happens during the transformation of breast cells to a malignant state in a dish," says Adam Engler, a professor of bioengineering at the UC San Diego Jacobs School of Engineering and senior author of the paper that describes the work.

The study is part of a growing body of research showing that mechanical forces—not just genetic and biochemical signals—play a key role in the development and spread of breast cancer. In the past, researchers have found that modeling stiff tissue environments in vitro promoted tumor growth—but these models often do not fully recreate what's happening in the body because they are static, Engler notes. "Tissue stiffening is a dynamic process. Mammary tissue doesn't just start out stiff, this is something that develops over time," he says.

So, Engler's approach was to use a material system in which the stiffness could be tuned dynamically while cells are inside, and then see how the cells respond to that change in stiffness.

"We're trying to mimic the process of fibrosis during the progression of tumor development," says Jesse Placone, a postdoctoral fellow in Engler's lab and a co-first author of the study. "As a tumor site forms, the local stiffness of the tissue increases. And by modeling this dynamic stiffness, our system is significantly more representative of what happens in vivo."

The team used a hydrogel called methacrylated hyaluronic acid, a soft material that can be stiffened to varying degrees with exposure to free radicals and UV light. They first stiffened the hydrogel enough to mimic the stiffness of normal breast tissue. Then, they cultured mammary epithelial cells in the gel. After the cells matured, the gel's stiffness was increased to that of a breast tumor. The amount of UV exposure required in this step was not enough to harm the cells, the team says.

An image of a soft hydrogel with normally developing cell cultures (filled triangles) and an image of a stiffened, tumor-like hydrogel with transformed cells (open triangles) are shown (left and right, respectively). (Image credit: Matt Ondeck and Jesse Placone)

They discovered that stiffening triggers multiple pathways that together signal mammary cells to become cancerous. Key players of these pathways include the proteins TWIST1, TGF-beta, SMAD, and YAP.

"In a dynamic environment, we found that these different pathways act cooperatively. It's not enough to inhibit just one of those pathways as was previously shown in studies modeling static, stiff environments," Engler says. "From a clinical perspective, this suggests that a single drug approach may not work for all patients with breast cancer tumors."

The team also discovered that a subpopulation of mammary cells do not respond to stiffening. Engler says this is good news for women, as fewer cells than previously thought may turn into cancer as a result of the environment alone. Such a result, if it translates to patients, could mean fewer or smaller primary tumors.

The team next plans to explore drug candidates to inhibit the pathways and study their effects on tumor progression. This research was done primarily on genetically controlled cell lines, so the team will follow up with studies on patient-derived cell lines.

Full details of the work appear in the Proceedings of the National Academy of Sciences.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!