Cytometry method enables mechanical screening of biological cells at unprecedented speed

Feb. 2, 2015
A new cytometry approach for the mechanical characterization of cells, developed by scientists at the Dresden University of Technology, has the potential to revolutionize the diagnosis of a wide range of diseases. 

A new cytometry approach for the mechanical characterization of cells, developed by scientists at the Dresden University of Technology (Dresden, Germany), has the potential to revolutionize the diagnosis of a wide range of diseases.

Related: Instrumentation advances add flexibility and quantitation to flow cytometry

So far, there has been a lack of an adequate method to mechanically screen large populations of cells in a short amount of time. Their small size poses a significant challenge for detailed mechanical characterization of single biological cells. Current methods available for such characterization are technically involved, difficult in their handling, and limited to small cell numbers and low measurement rates. But the research team, led by Professor Jochen Guck at the University's Biotechnology Center (BIOTEC), has now developed an innovative technology that addresses all these problems: Real-time deformability cytometry (RT-DC) enables continuous, on-the-fly mechanical screening of hundreds of cells per second, a method they claim is 10,000 times faster than previous methods.

Real-time deformability cytometry (RT-DC) to determine the mechanical fingerprint of blood: Cells flow at a velocity of 10 cm/s from right to left through the microfluidic channel (width of the image shown: 1.5 mm). The sheath flow from the upper and lower right corners focuses the cells for cell deformability measurements in the narrowest part of the channel. This focusing causes the formation of heart-shaped streamlines as illustrated by an inverted overlay of many single frames. (Image: project ZellMechanik Dresden)

In a study, the scientists demonstrated the mechanical fingerprinting of the different types of cells contained in a drop of blood within a few minutes. Due to the very high throughput of RT-DC, even white blood cells, which are greatly outnumbered by the red blood cells by roughly 1:1000, can be reliably characterized. This is important because white blood cells constitute an important part of the immune system. Any characteristic change in their mechanical fingerprint could someday be used by medical doctors for a faster and better quantitative assessment of the health of patients.

Through the University spinoff company ZellMechanik Dresden, the next step for the researchers is to distribute the RT-DC technology commercially to a wide range of university and industrial researchers. Their ultimate goal is the development and commercialization of a dedicated, stand-alone diagnostic device.

Full details of the work appear in the journal Nature Methods; for more information, please visit http://dx.doi.org/10.1038/nmeth.3281.

-----

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!