Study to investigate use of artificial intelligence for identifying bloodborne bacteria

Aug. 13, 2019
The artificial intelligence technology aims to reduce the time required to correctly identify the bacterial species causing an infection to 60 minutes or less onsite.

Fluid Imaging Technologies (Scarborough, ME), and the University of Colorado Boulder (Boulder, CO) have entered into an exclusive agreement to conduct primary laboratory research aimed at determining whether the university's artificial intelligence (AI) software can detect bloodborne bacteria and identify the species from images collected using the company's FlowCam Nano particle imaging and analysis system.

In the study, entitled "Application of Convolutional Neural Networks and Flow Imaging Microscopy to Analysis of Blood Infections," the researchers will evaluate the 10 strains of bacteria most responsible for the 1.5 million sepsis cases and 250,000 fatalities annually in the U.S. per Centers for Disease Control and Prevention (CDC) data. These cases cost upwards of $6 billion in annual Medicare payments, according to the Centers for Medicare and Medicaid Services. The top 10 most wanted bacterial strains are: 

  • Staphylococcus aureus 
  • Staphylococcus epidermis
  • Staphylococcus haemolyticus
  • Enterococcus faecalis
  • Streptococcus agalactiae
  • Escherichia coli
  • Streptococcus pneumonia
  • Listeria monocytogenes
  • Enterobacter cloacae
  • Enterobacter aerogenase

To be conducted under the direction and supervision of Dr. Theodore Randolph of the Department of Chemical and Biological Engineering and the study's principal investigator, the research study will establish training set data for the 10 strains from representative Nano-Flow Imaging microscopy images, and then apply the university's deep convolutional neural network software to train a computer to identify the microorganisms automatically. Ultimately, the research team hopes to reduce the time required to correctly identify the bacterial species causing an infection from several days in a laboratory to 60 minutes or less onsite via the FlowCam Nano. Once identified, the proper antibiotic may be prescribed for fast, effective treatment.

Featuring optical technology for unprecedented image resolution, the FlowCam Nano flow imaging particle analyzer automatically detects, images, and characterizes micron- and sub-micron-sized particles and microorganisms ranging in size from 300 nm to 10+ µm. In addition to imaging bacterial strains, the imaging particle analyzer has proven effective in imaging red and white blood cells, protein agglomerates, silicon oil droplets, carbon nanotubes, yeast, and a variety of other nanoparticles.

For more information, please visit fluidimaging.com.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!