Algorithm for flow cytometry detects hundreds of proteins in one sample

Aug. 15, 2018
The new flow cytometry algorithm enables different colors of micro-beads to be generated with high accuracy.

Knowing that the vast majority of blood tests that exist target only a single protein at a time, a team of scientists at McGill University (Montreal, QC, Canada) has developed a technique to streamline the analysis of proteins, offering a quick, high-volume, and cost-effective tool to hospitals and research labs alike.

PhD candidate Milad Dagher, Professor David Juncker, and colleagues in McGill's Department of Biomedical Engineering have devised a technique that can detect hundreds of proteins with a single blood sample. Part of their published work describes a new and improved way to barcode microbeads using multicolor fluorescent dyes. By generating upwards of 500 differently colored microbeads, their new barcoding platform enables detection of markers in parallel from the same solution—for example, a blue barcode can be used to detect marker 1, while a red barcode can detect marker 2, and so on. Flow cytometry then counts the proteins that stick to the different colored beads.

Though this kind of analysis method has been available for some time, interference among multicolor dyes has limited the ability to generate the right colors. Now, a new algorithm developed by the research team enables different colors of microbeads to be generated with high accuracy.

"Current technologies hold a major tradeoff between the number of proteins that can be measured at once, and the cost and accuracy of a test," Dagher explains. "This means that large-scale studies, such as clinical trials, are underpowered because they tend to fall back on tried-and-true platforms with limited capabilities."

Dagher and Jeffrey Munzar, a postdoctoral fellow in the Juncker lab, have teamed up with Professor Juncker and spun-off a company, nplex biosciences, to commercialize their new approach. The research group was also recently awarded an NSERC Idea to Innovation grant to support the development of the next version of their technology platform.

Full details of the work appear in the journal Nature Nanotechnology.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!