Lab-scale laser device prototype discerns between healthy and damaged skin tissue

April 12, 2017
Researchers in Spain have designed a laser device that aims to easily distinguish between healthy and damaged tissue.

Researchers from the Technical University of Madrid, in collaboration with the Polytechnic University of Valencia and the Centro de Investigación Biomédica en Red (CIBER)'s Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN; all in Spain), have designed a laser device specifically designed for optical hyperthermia applications, with the aim of easily distinguishing between healthy and damaged tissue.

The low-cost, lab-scale laser device was developed for treatments based on optical hyperthermia applications. This technique is used, for instance, in therapies against skin cancer, and it aims to kill the tumor cells by overheating them. Irradiating synthesized metallic nanoparticles heats the tumor tissue, reaching a temperature between 42° and 48°C to cause a hypoxia that leads to cellular death, explains Roberto Montes, a researcher from the Polytechnic University of Valencia.

The prototype consists of an infrared (IR) laser with power up to 500 mW able to provide a power density up to 4 W/cm2, a sensor that records the temperature in real time during the irradiation, and a laser power regulator, among other components.

Frontal (top) and lateral (bottom) views of the developed laser system.

The device is already being used in in vitro cellular crops and in therapies that combine hyperthermia with the controlled release of drugs. "Although the equipment has been designed to exclusively work in a lab environment, once the technique is developed, it could be easily applied to a hospital environment with small changes," explains Javier Ibáñez from the Polytechnic University of Valencia.

Because the research team is in its initial phase with the device, Ibáñez says, they still need to conduct animal tissue testing, followed by testing on living animals and verifying its application in patients.

Full details of the work appear in the journal Sensors and Actuators A: Physical; for more information, please visit

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Fluorescence Microscopy Part 1: Illuminating Samples for High-Resolution Imaging

Dec. 1, 2023
Illuminating Samples Fluorescence microscopy is a powerful imaging technique widely used in various fields, especially in biomedical research, to visualize and study fluorescently...

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!