Photodynamic therapy study targets cancer treatment using a nano carrier

June 17, 2010
France-- CEA-Leti has launched the TARGET-PDT project, which is designed to increase the effectiveness of photodynamic therapy (PDT) for treating cancer by developing a novel nano carrier-based approach.

France-- CEA-Leti has launched the TARGET-PDT project designed to increase the effectiveness of photodynamic therapy (PDT) for treating cancer by developing a novel nano carrier-based approach.

Focusing on using PDT against bone cancer and head-and-neck squamous cell carcinoma, the project will study the delivery and targeting of photosensitizers encapsulated into lipid nano-particles. For both cancer forms, current treatment regimes often result in low cure rates and show serious side effects or a poor functional outcome. The nano-carriers offer a high payload that will include antibodies targeting specific tumor biomarkers.

PDT has already shown significant potential for improving cancer treatment because it offers strictly focused application, biocompatibility with other forms of treatment, the option for repeated use, excellent cosmetic or functional outcomes and fast recovery. Typically, there is a modest enhanced accumulation of the photosensitizer in tumor tissues and an additional selectivity is mainly provided by the confined illumination of the target area.

But the use of PDT has been restrained by limited effectiveness of the photosensitizers on reaching the tumor and the potential damage to healthy cells near the tumor. Improved targeting of the photosensitizer and nano-particles is necessary to prevent damage to the surrounding healthy tissue.

CEA-Leti expects the nano carrier-based approach will significantly improve delivery and targeting of the photosensitizer, enhancing concentrations at the tumor site even after systemic application.

The TARGET-PDT project will allow the partners to study all aspects of PDT treatment: nano-carrier size and payload, photosensitizers such as chlorines and phthalocyanines, targeting method and types of laser irradiation.

The experimental approach will be developed into a preclinical validation to deliver an optimized combination for first clinical “nano-PDT” at a later stage. By using nanotechnology-based photosensitizer delivery systems, the project will set the stage for improved control of the therapy and more comfort for cancer patients.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!