Grant enables researchers to image coordination between brain and body

March 1, 2009
A four-year, $3.4 million research grant from the U.S. Navy Office of Naval Research is enabling researchers at the Swartz Center for Computational Neuroscience at UC San Diego (San Diego, CA), to study human body/brain dynamics of subjects engaged in normal activity. The group's aim is development of a concurrent brain and body imaging modality, MoBI (Mobile Brain/Body Imaging).

A four-year, $3.4 million research grant from the U.S. Navy Office of Naval Research is enabling researchers at the Swartz Center for Computational Neuroscience at UC San Diego (San Diego, CA), to study human body/brain dynamics of subjects engaged in normal activity. The group's aim is development of a concurrent brain and body imaging modality, MoBI (Mobile Brain/Body Imaging).

"Although functional brain imaging has allowed many new insights into human brain function, so far no imaging modality has allowed scientists to study brain dynamics of subjects performing normal activities in a 3-D environment," says Swartz Center Director Scott Makeig, who is principal investigator for the project. "The MoBI modality we are developing under this project will allow such studies for the first time."

Makeig and colleagues propose to combine non-invasive electroencephalographic (EEG) recordings with full-body motion capture to explore the distributed brain dynamics that accompany and support natural human behavior, including interactions with objects, active agents, and other people. Makeig told BioOptics World how the motion capture is done: In one setup they use infrared light sources that illuminate passively reflective markers placed on the subjects' clothing--and multiple cameras record the positions of the markers. In another, newer system, the markers are replaced by suitable clothing--or the subject wears small infrared emitters, and surrounding cameras record their positions.

Beyond combining the brainwave recordings with whole body motion capture, Makeig said that, "An immediate further aim is to incorporate a small scene camera (worn on the bridge of the nose on a glasses frame) and eye tracking via a small camera worn off the bottom left of the left eyeglass frame."

More information:
See the PDF, Linking Brain, Mind and Behavior.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!