Technique uses sugars to image vertebrate development

Feb. 17, 2009
Berkeley, CA, USA--Carolyn Bertozzi has developed a series of techniques to manipulate glycans, sugars that occur throughout living things and are particularly abundant on the surfaces of cells. Her techniques enable a new way of visualizing vertebrate development. For instance, glycan patterns on cells in the mouth region of a zebrafish embryo (outlined above, left) are shown (above, right) at 60 hours after fertilization (orange) and again an hour later (green).

Berkeley, CA, USA--Carolyn Bertozzi, of UC Berkeley and the Lawrence Berkeley National Lab, has developed a series of techniques to manipulate glycans, sugars that occur throughout living things and are particularly abundant on the surfaces of cells. Her techniques provide, among other uses, a totally new way of visualizing vertebrate development.

Using developing zebrafish, Bertozzi and her colleagues tracked glycans moving and rearranging themselves. "We found some interesting and totally unexpected patterns as the sugars moved and clustered in certain areas." Bertozzi says, "It's like putting a new telescope up to the stars and seeing something new. And then you have to figure out what it is."

For instance, glycan patterns on cells in the mouth region (outlined in the grayscale image above, left) are shown (above, right) as they change beginning at 60 hours after fertilization (orange) and again an hour later (green).

Unlike proteins, glycans are not directly programmed by genes. They can't be labeled using genetic methods, in the way that a protein can be made to fluoresce by genetically combining its gene with that of a fluorescent protein. Instead, Bertozzi has devised ways to rig target glycans with reactive groups called "chemical reporters." Probes such as fluorescing molecules (fluorophores) are then sent in to react with the reporters.

Just over a decade ago, in what she called "an equal combination of cell biology and synthetic organic chemistry," she and her colleagues devised the key component of cell-surface engineering, the use of natural biological processes to plant artificial markers on the surfaces of living cells.

Bertozzi is director of the Molecular Foundry and professor of Chemistry and Molecular and Cell Biology, a Howard Hughes Medical Institute investigator, and a member of Berkeley Lab's Materials Sciences and Physical Biosciences Divisions. For more on her technique, see Imaging the Glycomes of Living Organisms at the Lawrence Berkeley National Laboratory site.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!