Optical cell-herding method promising for cancer diagnosis, regenerative medicine

May 27, 2009
A new optical technology that lines up living cells and controls their movements promises to enable creation of better artificial tissues and faster wound healing with less scarring. The technique could be useful for cancer assays, which test the motility of cells, or as a non-invasive, non-toxic boost for regenerative medicine.

A new optical technology that lines up living cells and controls cell movement promises to enable creation of better artificial tissues and faster wound healing with less scarring.

For years, scientists have used the energy in laser light to drill microscopic holes or as tweezers or traps to direct and maneuver small pieces of matter. Guiding entire cells, though, has proven difficult because the lasers used for manipulation tend to damage the structural units of living organisms.

Now Aristide Dogariu and colleagues at the University of Central Florida (Orlando, FL) have developed an optical procedure that does not harm cells, but affects their "skeletons"--ensembles of slender rods made out of an abundant protein called actin. The actin rods are constantly growing and shrinking inside of cells. The direction in which they grow changes the cell's membrane shape and dictates where the cell moves.

Dogariu and colleagues use the polarization of optical waves to create a field around the cells in which the growing actin rods line up like a compass in the Earth's magnetic field. These optical fields can be used to guide large groups of cells to line up and move in the same direction.

The technique could be useful for cancer assays, which test the motility of cells, or as a non-invasive, non-toxic boost for regenerative medicine. Though cells have complicated and intriguing mechanisms to sense and communicate where an injury occurs, the possibility of using photonic scaffolds to stimulate and guide cells' motility to accelerate tissue repair, is now quite promising.

This research is scheduled to be presented during the 2009 Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (CLEO/IQEC, May 31 - June 5, Baltimore, MD.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Achromatic Lenses: High-Quality Custom Optics

March 13, 2025
Ensure clarity and accuracy in your optics systems with Lacroix’s achromatic lenses. Explore how our custom solutions minimize chromatic aberration for perfect results.

Manufacturing Considerations for Tolerancing Aspheres

March 13, 2025
Understand the critical factors in manufacturing aspheres and how Lacroix Optics ensures precise tolerancing in every optical component.

Explore Our Videos: Insights into Precision Optics

March 13, 2025
Get an inside look at Lacroix Optics with our collection of informative videos showcasing our capabilities, innovations, and processes.

Optical Assemblies: Reliable and Precise Solutions

March 13, 2025
Ensure your optical system works seamlessly with Lacroix Optics' custom optical assemblies. Discover the precision and reliability we bring to every project.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!