Bright, stable nanocrystals enable views of intra-cellular activity

June 17, 2009
BERKELEY, CA, USA--Bright, stable and bio-friendly single-molecule light-emitting nanocrystals, developed at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (LBNL), can act as individual investigators of in-vivo intra-cellular activity. The probes represent a significant step in understanding the behaviors of proteins and other components in complex systems such as a living cell.

BERKELEY, CA, USA--Bright, stable and bio-friendly single-molecule light-emitting nanocrystals, developed at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (LBNL), can act as individual investigators of activity within a cell. The probes represent a significant step in scrutinizing the behaviors of proteins and other components in complex systems such as live cells.

"The nanoparticles we've designed can be used to study biomolecules one at a time," said Bruce Cohen, a staff scientist in the Biological Nanostructures Facility at Berkeley Lab's nanoscience research center, the Molecular Foundry. "These single-molecule probes will allow us to track proteins in a cell or around its surface, and to look for changes in activity when we add drugs or other bioactive compounds."

Molecular Foundry post-doctoral researchers Shiwei Wu and Gang Han, led by Cohen, Imaging and Manipulation of Nanostructures staff scientist Jim Schuck and Inorganic Nanostructures Facility Director Delia Milliron, worked to develop nanocrystals containing rare earth elements that absorb low-energy infrared light and transform it into visible light through a series of energy transfers when they are struck by a continuous wave, near-infrared laser. Biological tissues are more transparent to near-infrared light, making these nanocrystals well suited for imaging living systems with minimal damage or light scatter.

"Rare earths have been known to show phosphorescent behavior, like how the old-style television screen glows green after you shut it off. These nanocrystals draw on this property, and are a million times more efficient than traditional dyes," said Schuck. "No probe with ideal single-molecule imaging properties had been identified to date—our results show a single nanocrystal is stable and bright enough that you can go out to lunch, come back, and the intensity remains constant."

To study how these probes might behave in a real biological system, the Molecular Foundry team incubated the nanocrystals with embryonic mouse fibroblasts, cells crucial to the development of connective tissue, allowing the nanocrystals to be taken up into the interior of the cell.

Live-cell imaging using the same near-infrared laser showed similarly strong luminescence from the nanocrystals within the mouse cell, without any measurable background signal.

Molecular Foundry post-doctoral researcher Shiwei Wu, staff scientist Jim Schuck, Facility Director Delia Milliron, staff scientist Bruce Cohen and post-doctoral researcher Gang Han demonstrate bright, stable and bio-friendly nanocrystal probes that act as individual investigators of their local environment.

"While these types of particles have existed in one form or another for some time, our discovery of the unprecedented 'single-molecule'
properties these individual nanocrystals possess opens a wide range of applications that were previously inaccessible," Schuck adds.

For more information see the paper, "Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals," by Shiwei Wu, Gang Han, Delia J. Milliron, Shaul Aloni, Virginia Altoe, Dmitri Talapin, Bruce E. Cohen and P. James Schuck, in Proceedings of the National Academy of Sciences.

Posted by Barbara G. Goode, [email protected], for BioOptics World.

Sponsored Recommendations

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!