Largest pathology image ever produced

Sept. 9, 2009
WATERLOO, CANADA--This view of breast tissue, a close-up of "the largest pathology image ever" produced, was generated by Biomedical Photometrics Inc. using its TISSUEscope 4000 slide scanner. The instrument can image specimens up to 5 x 7 inches thanks to proprietary confocal submicron laser scanning technology.

WATERLOO, ON CANADA--This image represents a section of breast tissue from what is claimed to be the largest pathology image ever produced. The image was generated by Biomedical Photometrics Inc. using its TISSUEscope 4000 slide scanner, which is capable of image specimens up to 5 x 7 inches. BPI's website, which hosts number of new brightfield and confocal fluorescence pathology images generated by the instrument, enables you to click on a thumbnail and "wander around" inside the imagery--just as in Google Earth.

The company bases its instruments (and services) on patented, proprietary confocal submicron laser scanning technology, which enables panoramic, fluorescence and brightfield imaging of large specimens in minutes. The technology replaces conventional microscope objectives with telecentric f*theta laser scan lenses and new scanning optics, which enables a viewing area more than 100 times that of a conventional microscope with the same resolution.

The incoming laser beam is focused to a spot on the microscope by a telecentric, f*theta laser scan lens, and this spot is moved across the width of the slide by a scanning mirror. At the same time, the slide is moved slowly along its length, so the result is a raster scan of the focused laser spot across the surface of the slide (and the tissue specimen mounted on it). Reflected or fluorescent light from the specimen is collected by the scan lens and detected using a photomultiplier tube. Data are collected one pixel at a time during the scan and assembled into a digital image file (three channels can be detected simultaneously).

Take a tour through the breast tissue--and other specimens--at Biomedical Photometrics' image gallery.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!