Largest pathology image ever produced

Sept. 9, 2009
WATERLOO, CANADA--This view of breast tissue, a close-up of "the largest pathology image ever" produced, was generated by Biomedical Photometrics Inc. using its TISSUEscope 4000 slide scanner. The instrument can image specimens up to 5 x 7 inches thanks to proprietary confocal submicron laser scanning technology.

WATERLOO, ON CANADA--This image represents a section of breast tissue from what is claimed to be the largest pathology image ever produced. The image was generated by Biomedical Photometrics Inc. using its TISSUEscope 4000 slide scanner, which is capable of image specimens up to 5 x 7 inches. BPI's website, which hosts number of new brightfield and confocal fluorescence pathology images generated by the instrument, enables you to click on a thumbnail and "wander around" inside the imagery--just as in Google Earth.

The company bases its instruments (and services) on patented, proprietary confocal submicron laser scanning technology, which enables panoramic, fluorescence and brightfield imaging of large specimens in minutes. The technology replaces conventional microscope objectives with telecentric f*theta laser scan lenses and new scanning optics, which enables a viewing area more than 100 times that of a conventional microscope with the same resolution.

The incoming laser beam is focused to a spot on the microscope by a telecentric, f*theta laser scan lens, and this spot is moved across the width of the slide by a scanning mirror. At the same time, the slide is moved slowly along its length, so the result is a raster scan of the focused laser spot across the surface of the slide (and the tissue specimen mounted on it). Reflected or fluorescent light from the specimen is collected by the scan lens and detected using a photomultiplier tube. Data are collected one pixel at a time during the scan and assembled into a digital image file (three channels can be detected simultaneously).

Take a tour through the breast tissue--and other specimens--at Biomedical Photometrics' image gallery.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Achromatic Lenses: High-Quality Custom Optics

March 13, 2025
Ensure clarity and accuracy in your optics systems with Lacroix’s achromatic lenses. Explore how our custom solutions minimize chromatic aberration for perfect results.

Manufacturing Considerations for Tolerancing Aspheres

March 13, 2025
Understand the critical factors in manufacturing aspheres and how Lacroix Optics ensures precise tolerancing in every optical component.

Explore Our Videos: Insights into Precision Optics

March 13, 2025
Get an inside look at Lacroix Optics with our collection of informative videos showcasing our capabilities, innovations, and processes.

Optical Assemblies: Reliable and Precise Solutions

March 13, 2025
Ensure your optical system works seamlessly with Lacroix Optics' custom optical assemblies. Discover the precision and reliability we bring to every project.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!