$8M grant will kickstart study on photodynamic therapy, surgery's effects on deadly mesothelioma

July 11, 2014
A team of researchers has received an $8 million grant from the National Cancer Institute to study the effects of photodynamic therapy (PDT) in patients with malignant pleural mesothelioma, a rare, aggressive, and deadly cancer that most often manifests itself in the lining of the lungs and is caused almost exclusively by exposure to asbestos.

Researchers at the Perelman School of Medicine at the University of Pennsylvania (Philadelphia, PA), in collaboration with the Roswell Park Cancer Institute (Buffalo, NY), have received an $8 million grant from the National Cancer Institute (NCI) to study the effects of photodynamic therapy (PDT) in patients with malignant pleural mesothelioma, a rare, aggressive, and deadly cancer that most often manifests itself in the lining of the lungs and is caused almost exclusively by exposure to asbestos. The grant will fund a clinical trial and additional studies looking at the effects of PDT on the patient’s immune response, the tumor cell itself, and the blood vessels surrounding the tumor.

Related: Inside and outside: New approach to PDT doubles toxicity for cancer cells

The study, which expects to enroll 102 patients over four years, will administer Photofrin, a photosensitizing agent that makes cancer cells more sensitive to dying from light therapy, to trial participants 24 hours prior to surgery. Patients will undergo a radical pleurectomy, the removal of the pleura or lining of the lung along with the tumor cells contained within. They will then be randomized to two arms: half will receive PDT intraoperatively via an intense laser inserted in the chest cavity during the surgery, along with postoperative standard chemotherapy; and half who will receive only postoperative chemotherapy. Photofrin absorbs the light from the laser and produces an active form of oxygen that can destroy residual microscopic cancer cells left behind after surgery. Radical pleurectomy allows mesothelioma patients to keep their lung and is associated with better postoperative quality of life and improved survival compared with other common definitive mesothelioma surgeries.

PDT is known to kill cancer cells, but researchers also seek to understand the patient's immune response, the tumor microenvironment, and the blood vessels in and surrounding the tumor in three additional studies funded under the grant.

The second project will examine the process by which PDT works to destroy tumor cells and look at whether there is an agent—a drug or other therapy—that can boost its effects.

The third project will look at whether certain pathways roused during surgery may play a key role in inflammation and cell growth and thus contribute to treatment failure in any way, and whether inhibiting these pathways will improve the efficacy of intraoperative PDT.

Finally, the team will study the vasculature of the tumor in patients following PDT and evaluate any changes in the vascular environment as a result of intraoperative PDT and the potential for modulation to improve the efficacy of the treatment.

-----

Don't miss Strategies in Biophotonics, a conference and exhibition dedicated to development and commercialization of bio-optics and biophotonics technologies!

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!