3-D printing technique yields artificial blood vessels for tissue engineering

Sept. 15, 2011
Researchers at the Fraunhofer Institute have combined 3-D printing technology established in rapid prototyping with multiphoton polymerization to create biocompatible, artificial blood vessels for tissue engineering.

Researchers at the Fraunhofer Institute (Munich, Germany) have combined 3-D printing technology established in rapid prototyping with multiphoton polymerization to create biocompatible, artificial blood vessels for tissue engineering.

When combined with multiphoton polymerization, a 3-D inkjet printer can generate 3-D solids quickly and precisely. Brief, intensive laser pulses impact the material and stimulate the molecules in a tiny focus point to crosslink them. The material then becomes an elastic solid due to the properties of the precursor molecules that have been adjusted. In this way, highly precise, elastic artery structures are built according to a 3-D building plan. Dr. Günter Tovar, project manager at the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB; Stuttgart, Germany), notes that while the individual techniques are already functioning and presently working in the test phase, the prototype for the combined system is being built.

But the right material is crucial to manufacture 3-D elastic solids, so the researchers came up with special inks to allow the later blood vessels to be flexible and elastic enough to interact with the natural tissue. Therefore, the synthetic tubes are biofunctionalized so that living body cells can dock onto them.

A polymer vessel, which can become an artificial blood vessel, is flushed with cellmedium. (Image courtesy of the Fraunhofer Institute for Interfacial Engineering and Biotechnology)

To accomplish this, the artificial blood vessels integrate modified biomolecules such as heparin and anchor peptides into the inside walls. That way, endothelial cells that form the innermost wall layer of each vessel in the body can attach themselves in the tube systems. Tovar points out that the lining is important to make sure that the components of the blood do not stick, but are transported onwards. The vessel can only work in the same fashion as its natural model to direct nutrients to their destination if an entire layer of living cells can be established, he says.

Looking ahead, 3-D printed blood vessels could serve as organic bypasses for people with clogged arteries or as replacement capillaries for smokers.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Next generation tunable infrared lasers

Nov. 28, 2023
Discussion of more powerful and stable quantum cascade tunable infrared lasers, applications, and test results.

What AI demands mean for data centers

Nov. 28, 2023
The 2023 Photonics-Enabled Cloud Computing Summit assembled by Optica took an aggressive approach to calling out the limitations of today’s current technologies.

SLP feature for lighting control available on cameras offering

Nov. 28, 2023
A proprietary structured light projector (SLP) feature is now available on the company’s camera series, including the ace 2, boost R, ace U, and ace L.

Chroma Customer Spotlight - Dr. David Warshaw, About his Lab

Nov. 27, 2023
David Warshaw, Professor and Chair of Molecular Physiology and Biophysics at the University of Vermont (UVM), walks us through his lab. Learn about his lab’s work with the protein...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!