Ultrafast laser method shows promise for improving presbyopia correction

Feb. 9, 2016
A virtual model for correcting presbyopia that involves an ultrafast laser is currently in development.

A team of researchers at Laser Zentrum Hannover e.V. (LZH; Germany) and collaborators have been developing a virtual model for correcting presbyopia (a form of farsightedness that occurs typically in middle and old age) that involves an ultrafast laser. In their femtosecond lentotomy method, the crystalline lens is made flexible again by performing micro-cuts with a femtosecond laser. The aim of the method, part of the research team's RayFEye project, is to make eye surgery results predictable.

Related: Ultrafast laser, OCT, and adaptive optics combine for accurate ophthalmic laser surgery

The Image-Guided Laser Surgery Group of the Biomedical Optics Department at LZH is developing an experimental setup in which the influence of the micro-cuts on the crystalline lens can be measured. What's special about the complex setup is that it can stretch and unstretch a sample crystalline lens, thus simulating different focus distances of the eye. The scientists can measure the changes in the beam path (ray tracing) through the lens both before and after the micro-cuts in the eye have been made.

The RayFEye project involves a femtosecond laser that applies micro-cuts in a crystalline lens in a stretcher as a virtual model for correcting presbyopia. (Photo: LZH)

With the results of these experiments, cutting patterns for the surgical correction of presbyopia can be determined and optimized. Cutting patterns and measurement results of the experiments are then entered into simulation software, which creates a virtual lens model on which the surgical correction can be simulated prior to the surgery.

The software is undergoing further development to customize it for clinical use, with the ability to simulate surgeries a priori to improve the results of eye corrections.

RayFEye project partners include Optimo Medical AG, which is developing the OptimEyes software, and ROWIAK GmbH, which manufactured the femtosecond laser system.

For more information, please visit www.lzh.de.

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!