PHOTOACOUSTICS: Optoacoustic method aims to improve fetal monitoring during delivery

March 23, 2015
A novel solution based on photoacoustics for monitoring fetal heart rate monitors cerebral venous oxygenation in the superior sagittal sinus to quickly and directly detect the amount of oxygen a baby is receiving.

Fetal heart rate monitoring during labor and delivery was introduced into practice in the 1970s without clinical trials. The method continues to be the only form of fetal monitoring used during late-stage labor—despite its inefficiency and continuing controversy. With an 89%+ false-positive prediction of fetal distress and prone to inconsistent interpretations, fetal heart rate monitoring has not produced better outcomes.

Now, Noninvasix (Galveston, TX) offers a novel solution based on photoacoustics. Unlike traditional fetal heart rate systems, which use changes in basal heart rate to indirectly assess fetal asphyxia, the new technology monitors cerebral venous oxygenation in the superior sagittal sinus to quickly and directly detect the amount of oxygen a baby is receiving.

The superior sagittal sinus (SSS) is a large central cerebral vein located immediately beneath the top of the human skull in the midline. Using a transvaginal, optoacoustic probe, short laser pulses directed into the SSS generate optoacoustic waves, which are sent to an electronic monitoring system for signal amplification, acquisition, and recording with a PC. Because the generated ultrasound signal returns in a straight line from the superior sagittal sinus, the actual saturation of hemoglobin in the superior sagittal sinus can be accurately determined. The patented technology provides accurate measurement of oxygenation due to high (optical) contrast and high (ultrasound) resolution that permits direct probing of blood vessels.

Moreover, because cerebral venous desaturation provides direct evidence that cerebraloxygen availability is insufficient to satisfy cerebral oxygen requirements, studies suggest that decreasing levels of SSS (SO2) can provide an early warning of neonatal cerebral hypoxia.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!