Fluorescence-emitting nanodots provide clues on how air pollution affects health

Sept. 11, 2018
The fluorescence method investigated how carbon-based air particulates behave as they interact with human lung tissue. 

Seeking to learn more about the mechanisms behind how air particulates affect human health, a team of researchers at the University of Fribourg (Fribourg, Switzerland) and the International Iberian Nanotechnology Laboratory (Braga, Portugal) has developed a fluorescence method to investigate how carbon-based combustion byproducts behave as they interact with human epithelial tissue. The researchers discovered that the surface properties of the carbon nanodot's properties and aggregation patterns affected their distribution in a lab-grown copy of the epithelium. The carbon nanodots served as representatives for air pollution particles.

"Localization and quantification of inhaled carbon nanoparticles at the cellular level has been very difficult," says Barbara Rothen-Rutishauser, an author on the paper. "We now have a model fluorescent particle that can try to answer questions about the fate of ultrafine particles in the lung."

At <100 nm in diameter, air particulates have the small size and large relative surface area to wreak havoc on cells and potentially enter the bloodstream. Other groups' research has shown that ultrafine particles induce adverse effects on the lungs and cardiovascular system by increasing oxidative stress in the body.

Because of particle size, it is difficult for lab techniques to distinguish between carbon in pollutants from carbon in tissues. Therefore, little is known about surface charge and states of agglomeration—two key physical and chemical features that affect how carbon particles interact with living tissues.

To begin modeling ultrafine particles, Estelle Durantie, another author of the study, turned to fluorescent carbon nanodots doped with nitrogen and a combination of nitrogen and sulfur with different sizes and charges. The team then applied these nanodots to the top layer of a lab-grown epithelial tissue, where gas exchange typically happens in the lung.

Dispersion behavior and agglomeration state of carbon nanodots and light sheet microscopy images of co-cultures exposed to nanodots are shown. (Image credit: Estelle Durantie and Hana Barosova)

Since regular fluorescence microscopes lack the resolution to visualize such small particles, the group used spectroscopy and ultraviolet (UV) light to detect and quantify nanodots as they migrated from the luminal compartment past their lung model's immune cells. As the researchers expected, charged particles tended to stick together before penetrating the gas-exchange barrier. While most of the neutrally charged nanodots passed through the tissue after only an hour, only 20% of the agglomerated charged particles infiltrated the epithelium.

Rothen-Rutishauser says she hopes to further improve nanodots so that they better mimic ultrafine particles. "What we're seeing is that translocation depends on aggregation state," she says. "We hope to continue trying out different sizes of nanodots, including other types of particles that get us closer to the real environment."

Full details of the work appear in the journal Biointerphases.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!