New fluorescent labeling method allows observation of protein functions never before seen

June 3, 2010
Cambridge, MA-- A green fluorescent protein known simply as GFP has revolutionized cell biology.  But MIT scientists have now come up with a new way to overcome the disadvantages of GFP by tagging proteins with a much smaller probe, allowing proteins to carry out their normal functions to offer scientists the chance to glimpse never-before-seen activity.

Cambridge, MA-- Since the 1990s, a green fluorescent protein known simply as GFP has revolutionized cell biology. Originally found in a Pacific Northwest jellyfish, GFP allows scientists to visualize proteins inside of cells and track them as they go about their business. Two years ago, biologists who discovered and developed the protein as a laboratory tool won a Nobel Prize for their work.

However, using GFP as a fluorescent probe has one major drawback—the protein is so bulky that it can interfere with the proteins it’s labeling, preventing them from doing their normal tasks or reaching their intended destinations.

Ting, White and their colleagues have now come up with a new way to overcome the disadvantages of GFP by tagging proteins with a much smaller probe. Their probe allows proteins to carry out their normal functions, offering scientists the chance to glimpse never-before-seen activity.

The researchers describe the new technique, dubbed PRIME (PRobe Incorporation Mediated by Enzymes), in the Proceedings of the National Academy of Sciences this week.

First isolated from a jellyfish in 1962, GFP allows scientists to track otherwise invisible proteins as they move about the cell, orchestrating processes such as cell division and metabolism. To achieve this, scientists tack the gene for GFP onto the gene for the protein they want to study. After the engineered gene is introduced into cells, it will produce proteins that glow fluorescent green.

However, GFP’s large size (238 amino acids) can interfere with some proteins, such as actin, a molecule that helps give cells their structure and is involved in cell division, motility and communication with other cells.

“People use fluorescent proteins to study actin all the time, but fusion to the fluorescent proteins has detrimental effects on actin’s function and trafficking,” says Tao Uttamapinant, co-lead author of the PNAS paper with White and former MIT postdoctoral associate Hemanta Baruah.

To overcome the drawbacks of GFP, Ting and her students used a blue fluorescent probe that is much smaller than GFP. Unlike GFP, the new probe is not joined to the target protein as it’s produced inside the cell. Instead, the probe is attached later on by a new enzyme that the researchers also designed.

For this to work, the researchers must add the gene for the new enzyme, known as a fluorophore ligase, to each cell at the same time that they add the gene for the protein of interest. They also add a short tag (13 amino acids) to the target protein, and this tag allows the enzyme to recognize the protein. When the blue fluorescent probe (7-hydroxycoumarin) is added to the cell, the enzyme attaches it to the short tag on the target protein.

MIT researchers have designed a fluorescent probe that can be targeted to different locations within a cell. Here, the probe is labeling only proteins in the cell membrane.
Image: Katharine White and Tao Uttamapinant

With this method, proteins such as actin can move freely throughout the cell and cross into the nucleus even when tagged with the fluorescent probe.

The researchers also demonstrated that they can label proteins in specific parts of the cell, such as the nucleus, cell membrane or cytosol (the interior of the cell), by tagging the enzyme with genetic sequences that direct it to specific locations. That way, the enzyme attaches the fluorescent probe only to proteins in those locations.

The MIT team is now working on engineering enzymes that will work with other types of probes. Ting has also filed for a patent on the fluorescent probe technique and plans to commercialize the technology so other labs can use it.

Source: ”A fluorophore ligase for site-specific protein labeling inside living cells.” Chayasith Uttamapinant, Katharine A. White, Hemanta Baruah, Samuel Thompson, Marta Fernádez-Suárez, Sujiet Puthenveetil, and Alice Y. Tin. Proceedings of the National Academy of Sciences. Week of May 30, 2010.

Funding: National Institutes of Health and The Dreyfus Foundation

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!