In vivo superresolution imaging method localizes single dyed droplets

April 23, 2019
The droplets flow smoothly in blood capillaries and provide excellent tracers for localization-based superresolution imaging.

Researchers at the California Institute of Technology (Caltech) Optical Imaging Laboratory (Pasadena, CA) have developed a technique for in vivo superresolution photoacoustic computed tomography (PACT)that breaks the acoustic diffraction limit by localizing the centers of single dyed droplets flowing in blood vessels. This technique has been shown to resolve brain blood vessels at a sixfold finer resolution.

Photoacoustic computed tomography (PACT) is a noninvasive hybrid imaging technique that excites biological tissues with light and detects the subsequently generated ultrasound to form images. PACT combines the advantages of both optical imaging—high optical contrast and ultrasonic imaging—high resolution and deep penetration in biological tissues. PACT has been widely used for vascular network mapping, functional brain imaging, and tumor detection in deep tissues.

However, by detecting ultrasonic waves, PACT cannot escape the doom that is faced by all wave-based imaging techniques: the diffraction of waves presents a fundamental limit on its spatial resolution. Due to ultrasonic diffraction, an absorbing point source is spread out as a disk (point spread function) in its image, which has a size comparable with the ultrasound wavelength. Therefore, structures in tissues are smeared out by this disk and blurred, and any features that are separated by a distance smaller than the ultrasound wavelength cannot be resolved. Although finer resolution can be achieved by detecting ultrasound with shorter wavelengths, the attenuation of ultrasound in tissues becomes stronger accordingly, limiting penetration.

So, the researchers—led by Lihong Wang, the Bren Professor of Medical Engineering and Electrical Engineering at Caltech—fabricated photoacoustically bright oil-in-water droplets using a solution of a hydrophobic dye, namely IR-780 iodide in oil. The sizes of the droplets range from 4 to 30 µm, which are much smaller than the wavelengths of the detected ultrasound, making them excellent photoacoustic point sources. Taking advantage of their small sizes, liquid compliance, and high photoacoustic brightness, once injected into the bloodstream, the droplets flow smoothly in blood capillaries and provide excellent tracers for localization-based superresolution imaging.

By injecting the droplets into brain vessels of live mice, the researchers achieved superresolution PACT in three steps:

The first step is to image single dyed droplets with single laser shots. The data acquisition time of PACT (~50 µs) is so short that the flowing droplets are almost frozen in each frame. The number of the injected droplets was controlled so that droplets are separated by more than half an acoustic wavelength, which guaranteed the image of each one (the disk) does not overlap with those of its neighbors.

The second step is to determine the exact position of each droplet by finding the center of its point spread function. Because the droplets are well-separated, their centers can be localized with precisions that are much smaller than the ultrasound wavelength. Taking advantage of droplet flow, droplets in closely separated vessels can be spatially resolved as long as they do not show up in the same image frame.

Super-resolved vascular imaging in vivo is shown. (Image credit: Pengfei Zhang, Lei Li, and Lihong V. Wang)

The final step is to repeat the imaging and localizing processes until a sufficient density of source points has been obtained. The researchers continuously acquired 36,000 image frames and localized a total of 220,000 droplets. By marking the positions of all of these point sources in one image, a super-resolved image can be built up, which represents a finer-resolved vascular network since the droplets are confined within the vessels. The spatial resolution of this image exceeds the diffraction limit, because it is determined by the accuracy with which the position of each droplet can be estimated. In addition to the resolution enhancement, tracking the flowing droplets also allowed the researchers to characterize the blood flow speed in the deep brain of live mice.

Superresolution PACT of microvasculature has the potential to substantially advance the study of normal blood-vessel function, as well as disease, such as angiogenesis in tumors in deep tissue.

Full details of the work appear in the journal Light: Science and Applications.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!