New IR marker enables advanced bioimaging

Sept. 12, 2014
Scientists at the Helmholtz Zentrum München have developed an infrared (IR) fluorescent protein marker to improve the quality of tissue imaging.

Scientists at the Helmholtz Zentrum München (Oberschleißheim, Germany) have developed an infrared (IR) fluorescent protein marker to improve the quality of tissue imaging. Dubbed Amrose, the new marker is now being used for advanced near-IR bioimaging procedures.

Related: Fluorescent labeling 101

Far-red shifted fluorescent tissue markers make it possible to visualize structures and processes with advanced bioimaging. This permits new insights into organisms and creates the potential for a wide range of applications, from more exact delineation of tumor and metastasis to tracking drug responses within whole-body imaging.

The team of scientists, headed by Dr. Ulrike Schoetz, Dr. Nikolas Deliolanis, Dr. Wolfgang Beisker, Prof. Horst Zitzelsberger, and Randolph Caldwell, have succeeded in developing novel fluorescent markers that excite in the far-red and emit in the IR spectrum. Depending on the light spectrum used and the organism under examination, these can now deliver better-quality images. The tests confirming the spectral properties were conducted in cooperation with the Max Planck Institute for Neurobiology (Martinsried) and the Federal Institute for Materials Research and Testing (Berlin).

A high level of diversification occurs naturally in the B cells of the immune system, which produce antibodies. When genetic material is introduced into these cells, this evolutionary mechanism can be co-opted to create new genetic and protein variants. The scientists were thus able to transfer the genetic information from the known fluorescent protein eqFP615 into the DT40 chicken B cell line to produce protein variants of Amrose with different spectral properties.

Full details of the work appear in the journal PLoS One; for more information, please visit http://dx.doi.org/10.1371/journal.pone.0107069.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!