Nanoparticle tracking analysis teams with fluorescence measurement for early disease detection

July 7, 2011
Researchers from the Nuffield Department of Obstetrics & Gynecology at Oxford University recently used a fluorescence nanoparticle tracking analysis (NTA) system from NanoSight to quickly size and phenotype cellular vesicles for use as biomarkers for early disease detection.

Researchers from the Nuffield Department of Obstetrics & Gynecology at Oxford University (Oxford, England) recently used a fluorescence nanoparticle tracking analysis (NTA) system from NanoSight (Amesbury, England) to quickly size and phenotype cellular vesicles for use as biomarkers for early disease detection. Their findings overcome previous limitations in the technology available for their measurement.

The NTA system visualizes vesicles by light scattering using a light microscope, records a video, and then tracks the Brownian motion of the individual vesicles via the NTA software, calculating their size and total concentration.

Using human placental vesicles and plasma, the team has demonstrated that NTA can measure cellular vesicles as small as ~50 nm, making it far more sensitive than conventional flow cytometry (lower limit ~300 nm). By combining NTA with fluorescence measurement, vesicles can be labeled with specific antibody-conjugated quantum dots, allowing their phenotype to be determined.

The researchers' work has been published in NanoMedicine, and comprehensive funding for the work was provided by a Wellcome Trust Technology Development, a Wellcome Trust Program Grant and by the Oxford Partnership Comprehensive Biomedical Research Center, with support from the Department of Health's NIHR Biomedical Research Center's funding scheme.

-----

Posted by Lee Mather

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!