Microscopy method renders spinal cord tissue transparent

Dec. 28, 2011
Researchers at the Max Planck Institute for Neurobiology and international colleagues have developed a new microscopy method to observe single nerve cells in intact tissue and in 3-D.

When spinal cord injury occurs, the axons (long nerve cell filaments) may become severed. Investigation on whether or not these axons can be stimulated to regenerate has been going on for a while—growth that takes place on a scale of only a few millimeters. Realizing this, researchers at the Max Planck Institute for Neurobiology (Martinsried, Germany) and international colleagues have developed a new microscopy method to observe single nerve cells in intact tissue and in 3-D.

So far, researchers have only been able to observe axon growth by cutting the tissue in question into ultra-thin slices and examining them under a microscope. But the two-dimensional sections provide only an inaccurate picture of the spatial distribution and progression of the cells. In exceptional cases, researchers could go to the trouble of first digitizing each slice and then reassembling the images, one by one, to produce a virtual 3-D model—but the endeavor requires days and sometimes weeks to process the results of just one examination. What's more, mistakes can easily falsify the results: The appendages of individual nerve cells might get squashed during the process of slicing, and the layers might be ever so slightly misaligned when set on top of each other.

Max Planck microscopy method enables researchers to see nerve cells in the intact cellular network of the spinal cord. (Image courtesy of the Max Planck Institute for Neurobiology)

The Max Planck research team's new method is based on a technique known as ultramicroscopy, which was developed by Hans Ulrich Dodt from the Technical University of Vienna in Austria. Taking this technique a step further, the Max Planck team recognized that spinal cord tissue is opaque due to the fact that the water and the proteins contained in it refract light differently. So, they removed the water from a piece of tissue and replaced it by an emulsion that refracts light in exactly the same way as the proteins, leaving them with a completely transparent piece of tissue.

By using fluorescent dyes to stain individual nerve cells, the researchers could now trace their path from all angles in an otherwise transparent spinal cord section. This enabled them to ascertain once and for all whether or not these nerve cells recommenced their growth following injury to the spine. Frank Bradke of the Max Planck team notes that their method can also be applied to other kinds of tissue; for example, the blood capillary system or the way a tumor is embedded in tissue could be portrayed and analyzed in 3-D.

The team's work has been published in Nature Medicine; for more information, please visit http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.2600.html.


Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!