Near-IR phosphor that emits for weeks promising for cancer detection

Nov. 22, 2011
Researchers at the University of Georgia have created a near-IR phosphor that has an afterglow of up to two weeks after a one-minute exposure to sunlight. The material can be made into nanoparticles that bind to cancer cells, as well as the potential for other biomedical applications.

While persistent phosphors (glow-in-the-dark materials) for the visible region are everywhere, persistent IR phosphors have been difficult to develop. Now, researchers at the University of Georgia (Athens, GA) have created a near-IR phosphor that has an afterglow of up to two weeks after a one-minute exposure to sunlight. The material can be made into nanoparticles that bind to cancer cells, as well as the potential for other biomedical applications.

The researchers created a series of chromium-doped zinc gallogermanate phosphors that exhibit strong emission at somewhere between 650 to 1000 nm, with the peak wavelength determined by composition.

"When you bring the material anywhere outside of a building, one minute of exposure to light can create a 360-hour release of near-IR light," says Zhengwei Pan, one of the researchers. "It can be activated by indoor fluorescent lighting as well, and it has many possible applications."

The time period of light emission for the trivalent chromium ion used in the emitter is normally short, typically on the order of a few milliseconds. The innovation in Pan's material is that its chemical structure creates a labyrinth of traps that capture excitation energy and store it for an extended period. As the stored energy is thermally released back to the chromium ions at room temperature, the compound persistently emits near-IR light.

Pan and researchers Feng Liu and Yi-Ying Lu spent three years developing the material. Initial versions emitted light for minutes, but the researchers extended this time to days, and finally to weeks. "Even now, we don't think we've found the best compound," Pan says. "We will continuously tune the parameters so that we may find a much better one."

The researchers placed the material in fresh water, salt water, and even a corrosive bleach solution for three months and found no decrease in performance.

For more information, please visit http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3173.html.

-----

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it's free!

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!