Miniature biosensor detects viruses with minimal sample prep

Jan. 1, 2011
A miniature biosensor developed by Professor Hatice Altug's team of researchers at Boston University is the first to detect intact viruses by exploiting plasmonic nanohole arrays.

A miniature biosensor developed by Professor Hatice Altug's team of researchers at Boston University is the first to detect intact viruses by exploiting plasmonic nanohole arrays. The size of a quarter, the biosensor can quickly detect live viruses from biological media and measure the intensity of the infection process. It is described in the November 5, 2010 online edition of Nano Letters. Unlike PCR and ELISA approaches, the new method requires no enzymatic signal amplification or fluorescent tagging, so samples can be read immediately following pathogen binding with little or no preparation. In collaboration with the U.S. Army Medical Research Institute for Infectious Diseases, the BU team has demonstrated reliable detection of hemorrhagic fever virus surrogates (for the Ebola virus) and pox viruses (such as smallpox) in ordinary biological laboratory settings.

Metallic film plasmonic nanohole arrays, with apertures of 200 to 350 nm in diameter, transmit light more strongly at certain wavelengths. When a live virus in a sample solution, such as blood or serum, binds to the sensor surface, the refractive index in close proximity to the sensor changes, causing a detectable shift in the resonance frequency of the light transmitted through the nanoholes. The magnitude of that shift reveals the presence and concentration of the virus in the solution.

The researchers are now working on a version of the platform designed for use in the field with minimal training.

More BioOptics World Current Issue Articles

More BioOptics World Archives Issue Articles

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!