Fluorescence imaging enables efficient study of inhaled nanoparticles

Jan. 1, 2011
A real-time imaging system has enabled scientists at Beth Israel Deaconess Medical Center (BIDMC) and the Harvard School of Public Health to track near-infrared (NIR) fluorescent nanoparticles as they moved from the airspaces of the lungs, into the body and out again.

A real-time imaging system has enabled scientists at Beth Israel Deaconess Medical Center (BIDMC) and the Harvard School of Public Health to track near-infrared (NIR) fluorescent nanoparticles as they moved from the airspaces of the lungs, into the body and out again. The resulting knowledge promises to help develop therapeutic agents to treat pulmonary disease, as well as offer a greater understanding of the health effects of air pollution.1

The study aimed to determine the characteristics and parameters of inhaled nanoparticles that mediate their uptake into the body—from the external environment, across the alveolar lung surface and into the lymphatic system and bloodstream, and eventually to other organs. The researchers used the FLARE (Fluorescence-Assisted Resection and Exploration) imaging system and systematically varied the chemical composition, size, shape and surface charge of a group of NIR fluorescent nanoparticles to compare them. The team then tracked the nanoparticles' movement in the lungs of rat models, and verified results using conventional radioactive tracers. Their results established that non-positively charged nanoparticles, smaller than 34 nm in diameter, appeared in the lung-draining lymph nodes within 30 minutes. They also found that nanoparticles smaller than 6 nm in diameter with equal positive and negative charge traveled to the draining lymph nodes within just a few minutes, and were subsequently cleared by the kidneys.

These findings promise to help drug makers design and optimize particles for delivery by inhalation, and may also guide assessment of the health effects of particulate pollutants.

1. H.S. Choi et al., Nature Biotechnology 28: 1300-1303 (2010)

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!