‘Cornell dots’ get single pore makeover for more targeted drug delivery

April 16, 2013
Cornell University researchers have created a pore in "Cornell dots," which are brightly glowing nanoparticles the researchers developed that can carry medicine.

Cornell University (Ithaca, NY) researchers have created a pore in "Cornell dots," which are brightly glowing nanoparticles the researchers developed that can carry medicine. Dubbed C-Dots, they may help light up cancer cells and provide a new patient-friendly, viable option to battle cancer.

Related: FDA approves human quantum-dot trial

“No one has ever made a one-pore, super-small silica particle—at 10 nm and below—to deliver medicine,” says Ulrich Wiesner, Cornell’s Spencer T. Olin Professor of Materials Science and Engineering. “Clearing this object out of the body quickly also minimizes its impact on the body.”

Previously, Wiesner and his colleagues had demonstrated the useful, diagnostic aspects of C-Dots. Now, they have illustrated the porous C-Dots (mC-Dots, for mesoporous) concept: The mC-Dots could find the tumor, deliver medicine to kill it, and then escape in urine within a couple of hours.

Mesoporous C-Dots, or mC-Dots, populate a field a few hundred nanometers wide. These new, single-pore particles can carry medicine and then flush quickly from the body. (Image courtesy of the Ulrich Wiesner Laboratory/Cornell)

A single C-Dot consists of dye molecules encased in a chemically inert silica shell that can be as small as 5 nm in diameter. Previous research showed that the outside of the shell can be coated with organic molecules that will attach to such desired targets as tumor surfaces or even locations within tumors.

The cluster of dye molecules in a single dot in solution fluoresces near-infrared (NIR) light much more brightly than single dye molecules, and the fluorescence will identify malignant cells, showing a surgeon exactly what needs to be cut out and helping ensure that all malignant cells are found. But surgeons may one day forego the scalpel because with a built-in pore, the mC-Dots have the ability to bring medicine to the tumor.

Wiesner presented a talk on their work, titled “Cornell Dots: Fluorescent Core-shell Silica Nanoparticles to Interrogate Biological Environments,” at the American Chemical Society meeting in New Orleans, LA, on April 7.


Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!