Hyperspectral imaging approach shows promise for earlier GI cancer detection

Oct. 20, 2016
A hyperspectral imaging-enabled endoscopy system has the goal of detecting and characterizing cancer in the GI tract early.

A team of researchers at the University of Cambridge (England) has developed a hyperspectral imaging-enabled endoscopy system that has the goal of detecting and characterizing early cancerous changes in the gastrointestinal (GI) tract. The technique involves using a standard endoscopy system with a novel set of camera filters, increasing the number of colors that can be visualized during endoscopy and potentially improving the ability to detect abnormal cells in the lining of the gut.

Related: Imaging spectrometers look at life in two ways

Traditional endoscopy involves using white light and detectors that replicate our eyes, which detect light in red, green, and blue color channels, explains Dr. Sarah Bohndiek, the lead researcher. With hyperspectral imaging-enhanced endoscopy, the number of color channels that can be visualized increases from three to over 50, she says.

"Since cell changes associated with the development of cancer lead to color changes in the tissues, we believe that hyperspectral imaging could help us to improve the specificity of lesion identification because we can use these colors to identify abnormal tissues," Bohndiek adds.

Hyperspectral imaging collects and processes information from across the electromagnetic spectrum. In contrast to the human eye, which sees color primarily in three bands (red, green, and blue), spectral imaging divides the color spectrum into many more bands and can be extended beyond the visible range of light. The images obtained by hyperspectral imaging can provide information about the physiology and chemical composition of human tissues, and the technique is emerging as having great potential for noninvasive cancer diagnosis and image-guided surgery.

Bohndiek and her colleagues have been working to overcome some of the limitations of currently available instruments used for hyperspectral imaging, which are complex, bulky, expensive, and not suitable for widespread clinical use. The team has developed a small, low-cost, and robust fluorescence hyperspectral imaging system that has already been used to image a range of dyes in realistic tissue backgrounds. Bohndiek believes that her team's new fluorescence hyperspectral imaging system could be readily incorporated into standard clinical endoscopies to bring the diagnostic power of hyperspectral imaging one step closer to being used for the rapid detection of early cancerous changes within the GI tract.

The technique was presented at United European Gastroenterology (UEG) Week Vienna 2016, held October 15-19 in Vienna, Austria. For more information on Bohndiek and her research team's work, please visit www.bohndieklab.org.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!